Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Alzheimers Dement ; 19(4): 1175-1183, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35934777

RESUMO

INTRODUCTION: Screening potential participants in Alzheimer's disease (AD) clinical trials with amyloid positron emission tomography (PET) is often time consuming and expensive. METHODS: A web-based application was developed to model the time and financial cost of screening for AD clinical trials. Four screening approaches were compared; three approaches included an AD blood test at different stages of the screening process. RESULTS: The traditional screening approach using only amyloid PET was the most time consuming and expensive. Incorporating an AD blood test at any point in the screening process decreased both the time and financial cost of trial enrollment. Improvements in AD blood test accuracy over currently available tests only marginally increased savings. Use of a high specificity cut-off may improve the feasibility of screening with only an AD blood test. DISCUSSION: Incorporating AD blood tests into screening for AD clinical trials may reduce the time and financial cost of enrollment. HIGHLIGHTS: The time and cost of enrolling participants in Alzheimer's disease (AD) clinical trials were modeled. A web-based application was developed to enable evaluation of key parameters. AD blood tests may decrease the time and financial cost of clinical trial enrollment. Improvements in AD blood test accuracy only marginally increased savings. Use of a high specificity cut-off may enable screening with only an AD blood test.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Amiloide , Testes Hematológicos , Peptídeos beta-Amiloides , Biomarcadores
2.
Ann Neurol ; 92(5): 729-744, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36151869

RESUMO

OBJECTIVE: To determine the characteristics of participants with amyloid-related imaging abnormalities (ARIA) in a trial of gantenerumab or solanezumab in dominantly inherited Alzheimer disease (DIAD). METHODS: 142 DIAD mutation carriers received either gantenerumab SC (n = 52), solanezumab IV (n = 50), or placebo (n = 40). Participants underwent assessments with the Clinical Dementia Rating® (CDR®), neuropsychological testing, CSF biomarkers, ß-amyloid positron emission tomography (PET), and magnetic resonance imaging (MRI) to monitor ARIA. Cross-sectional and longitudinal analyses evaluated potential ARIA-related risk factors. RESULTS: Eleven participants developed ARIA-E, including 3 with mild symptoms. No ARIA-E was reported under solanezumab while gantenerumab was associated with ARIA-E compared to placebo (odds ratio [OR] = 9.1, confidence interval [CI][1.2, 412.3]; p = 0.021). Under gantenerumab, APOE-ɛ4 carriers were more likely to develop ARIA-E (OR = 5.0, CI[1.0, 30.4]; p = 0.055), as were individuals with microhemorrhage at baseline (OR = 13.7, CI[1.2, 163.2]; p = 0.039). No ARIA-E was observed at the initial 225 mg/month gantenerumab dose, and most cases were observed at doses >675 mg. At first ARIA-E occurrence, all ARIA-E participants were amyloid-PET+, 60% were CDR >0, 60% were past their estimated year to symptom onset, and 60% had also incident ARIA-H. Most ARIA-E radiologically resolved after dose adjustment and developing ARIA-E did not significantly increase odds of trial discontinuation. ARIA-E was more frequently observed in the occipital lobe (90%). ARIA-E severity was associated with age at time of ARIA-E. INTERPRETATION: In DIAD, solanezumab was not associated with ARIA. Gantenerumab dose over 225 mg increased ARIA-E risk, with additional risk for individuals APOE-ɛ4(+) or with microhemorrhage. ARIA-E was reversible on MRI in most cases, generally asymptomatic, without additional risk for trial discontinuation. ANN NEUROL 2022;92:729-744.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Estudos Transversais , Peptídeos beta-Amiloides , Amiloide , Biomarcadores , Apolipoproteínas E
3.
Brain Commun ; 4(2): fcac045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35415607

RESUMO

Neurofilament light is a well-established marker of both acute and chronic neuronal damage and is increased in multiple neurodegenerative diseases. However, the protein is not well characterized in brain tissue or body fluids, and it is unknown what neurofilament light species are detected by commercial assays and whether additional species exist. We developed an immunoprecipitation-mass spectrometry assay using custom antibodies targeting various neurofilament light domains, including antibodies targeting Coil 1A/1B of the rod domain (HJ30.13), Coil 2B of the rod domain (HJ30.4) and the tail region (HJ30.11). We utilized our assay to characterize neurofilament light in brain tissue and CSF of individuals with Alzheimer's disease dementia and healthy controls. We then validated a quantitative version of our assay and measured neurofilament light concentrations using both our quantitative immunoprecipitation-mass spectrometry assay and the commercially available immunoassay from Uman diagnostics in individuals with and without Alzheimer's disease dementia. Our validation cohort included CSF samples from 30 symptomatic amyloid-positive participants, 16 asymptomatic amyloid-positive participants, 10 symptomatic amyloid-negative participants and 25 amyloid-negative controls. We identified at least three major neurofilament light species in CSF, including N-terminal and C-terminal truncations, and a C-terminal fragment containing the tail domain. No full-length neurofilament light was identified in CSF. This contrasts with brain tissue, which contained mostly full-length neurofilament and a C-terminal tail domain fragment. We observed an increase in neurofilament light concentrations in individuals with Alzheimer's disease compared with healthy controls, with larger differences for some neurofilament light species than for others. The largest differences were observed for neurofilament light fragments including NfL165 (in Coil 1B), NfL324 (in Coil 2B) and NfL530 (in the C-terminal tail domain). The Uman immunoassay correlated most with NfL324. This study provides a comprehensive evaluation of neurofilament light in brain and CSF and enables future investigations of neurofilament light biology and utility as a biomarker.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...