Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(41): e202309762, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37606233

RESUMO

In the dynamic domain of chiroptical technologies, it is imperative to engineer emitters endowed with circularly polarized luminescence (CPL) properties. This research demonstrates an advancement by employing a combined top-down and bottom-up strategy for the simultaneous amplification of photoluminescence quantum yield (Φ) and the luminescence dissymmetry factor (glum ). Square-planar Pt(II) complexes form helical assemblies, driven by torsional strain induced by bis(nonyl) chains. Integration of chiral anions leads these assemblies to prefer distinct helical sense. This arrangement activates the metal-metal-to-ligand charge transfer (MMLCT) transition that is CPL-active, with Φ and |glum | observing an upswing contingent on the charge number and aryl substituents in chiral anions. Utilizing the soft-lithographic micromolding in capillaries technique, we could fabricate exquisitely-ordered, one-dimensional co-assemblies to achieve the metrics to Φ of 0.32 and |glum | of 0.13. Finally, our spectroscopic research elucidates the underlying mechanism for the dual amplification, making a significant stride in the advancement of CPL-active emitters.

2.
Chem Sci ; 12(25): 8668-8681, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34257865

RESUMO

Polymer electroluminescence devices producing circularly polarized luminescence (CP PLEDs) have valuable photonic applications. The fabrication of a CP PLED requires a polymer host that provides the appropriate chiral environment around the emitting dopant. However, chemical strategies for the design of chiral polymer hosts remain underdeveloped. We have developed new polymer hosts for CP PLED applications. These polymers were prepared through a free-radical polymerization of 3-vinylcarbazole with a chiral N-alkyl unit. This chiral unit forces the carbazole repeat units to form mutually helical half-sandwich conformers with preferred (P)-helical sense along the polymer main chain. Electronic circular dichroism measurements demonstrate the occurrence of chirality transfer from chiral monomers to achiral monomers during chain growth. The (P)-helical-sense-enriched polymer interacts diastereoselectively with an enantiomeric pair of new phosphorescent (R)- and (S)-dopants. The magnitude of the Kuhn dissymmetry factor (g abs) for the (P)-helically-enriched polymer film doped with the (R)-dopant was found to be one order of magnitude higher than that of the film doped with the (S)-dopant. Photoluminescence dissymmetry factors (g PL) of the order of 10-3 were recorded for the doped films, but the magnitude of diastereomeric enhancement decreased to that of g abs. The chiral polymer host permits faster energy transfer to the phosphorescent dopants than the achiral polymer host. Our photophysical and morphological investigations indicate that the acceleration in the chiral polymer host is due to its longer Förster radius and improved compatibility with the dopants. Finally, multilayer CP PLEDs were fabricated and evaluated. Devices based on the chiral polymer host with the (R)- and (S)-dopants exhibit electroluminescence dissymmetry factors (g EL) of 1.09 × 10-4 and -1.02 × 10-4 at a wavelength of 540 nm, respectively. Although challenges remain in the development of polymer hosts for CP PLEDs, our research demonstrates that chiroptical performances can be amplified by using chiral polymer hosts.

3.
Chem Sci ; 10(5): 1294-1301, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30809343

RESUMO

Molecules capable of producing zero-field circularly polarized phosphorescence (CPP) are highly valuable for chiroptoelectronic applications that rely on triplet exciton. However, the paucity of tractable molecular design rules for obtaining CPP emission has inhibited full utilization. We report amplification of CPP by the formation of helical co-assemblies consisting of achiral square planar cycloplatinated complexes and small fractions of homochiral cycloplatinated complexes. The latter has a unique Pfeiffer effect during the formation of superhelical co-assemblies, enabling versatile chiroptical control. Large dissymmetry factors in electronic absorption (g abs, 0.020) and phosphorescence emission (g lum, 0.064) are observed from the co-assemblies. These values are two orders of magnitude improved relative to those of individual molecules. In addition, photoluminescence quantum yields (PLQY) also increase by a factor of ten. Our structural, photophysical, and quantum chemical investigations reveal that the chiroptical amplification is attributable to utilization of both the magnetically allowed electronic transition and asymmetric coupling of excitons. The strategy overcomes the trade-off between g lum and PLQY which has frequently been found for previous molecular emitters of circularly polarized luminescence. It is anticipated that our study will provide new insight into the future research for the exploitation of the full potential of CPP.

4.
Inorg Chem ; 57(21): 13985-13997, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30345759

RESUMO

The study of biological histamine (HA) requires probes capable of ratiometric photoluminescence detection of HA. We discovered that a monocycloplatinated complex having two solvento ligands ([Pt(2-(2-naphthyl)quinolinate)(NCCH3)2]ClO4) could produce ratiometric phosphorescence responses to HA in aerated aqueous solutions buffered to pH 7.4. The HA response was characterized with a hypsochromic shift of an emission peak wavelength from 635 to 567 nm. The corresponding phosphorescence intensity ratio (i.e., I567 nm/ I635 nm) increased from 0.26 to 1.90. Spectroscopic and spectrometric investigations indicated an occurrence of spontaneous displacement of the labile CH3CN ligands with HA. An independently prepared HA adduct supported this notion. The ratiometric phosphorescence responses to HA were highly tolerant to other biological stimuli, including changes in pH and the presence of biometals and biological Lewis bases such as amino acids, nucleosides, biothiols, neurotransmitters, and small molecular metabolites. Of note was the high selectivity toward HA over common biological ligands, including histidine, cysteine, and homocysteine, which was ascribed to tighter HA binding. Our phosphorescence measurements employing Boc-protected derivatives of HA suggested that the bis-chelate motif involving imidazolyl and terminal amino groups was crucial for eliciting the ratiometric phosphorescence signaling. Finally, the bioimaging utility of the HA probe was validated using RAW 264.7 macrophages that were exogenously supplemented with HA or stimulated with thapsigargin to enrich intracellular HA. Ratiometric phosphorescence imaging microscopy experiments demonstrated the ability of the probe for monitoring intracellular HA uptake. In addition, photoluminescence lifetime imaging microscopy techniques could be applied for visualization of HA within the RAW 264.7 cells, because the HA binding elongated the photoluminescence lifetime. Our study demonstrated the promising utility of inner-sphere interactions of phosphorescent Pt(II) complexes for detection of biological HA.

5.
Dalton Trans ; 47(3): 675-683, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29271445

RESUMO

A visible light induced three-component catalytic system with the cobalamin derivative (B12) as a catalyst, the cyclometalated iridium(iii) complex (Irdfppy, Irppy, Irpbt and [Ir{dF(CF3)ppy}2(dtbpy)]PF6) as a photosensitizer and triethanolamine as an electron source under N2 was developed. This catalytic system showed a much higher catalytic efficiency than the previous catalytic system using [Ru(ii)(bpy)3]Cl2 as the photosensitizer for the dechlorination reaction of 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT). Noteworthy is the fact that the remarkable high turnover number (over ten thousand) based on B12, which ranks at the top among the reported studies, was obtained when Irdfppy was used as a photosensitizer. This photocatalytic system was also successfully applied to the B12 enzyme-mimic reaction, i.e., the 1,2-migration of the phenyl group of 2-bromomethyl-2-phenylmalonate. The plausible reaction mechanism was proposed, which involved two quenching pathways, an oxidative quenching pathway and a reductive quenching pathway, to be responsible for the initial electron transfer of the excited-state photosensitizers during the DDT dechlorination reaction. Transient photoluminescence experiments revealed that the oxidative quenching of the photosensitizer dominated over the reductive quenching pathway.


Assuntos
Irídio/química , Luz , Processos Fotoquímicos , Fármacos Fotossensibilizantes/química , Vitamina B 12/química , Catálise
6.
Chem Commun (Camb) ; 53(86): 11830-11833, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-29039856

RESUMO

The combined use of a singlet oxygen photosensitizer and 1,3-diarylisobenzothiophene enables efficient generation of hydrogen sulfide under visible light illumination.

7.
Chemistry ; 22(49): 17790-17799, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27791290

RESUMO

The photoredox catalytic coupling of halomethyl arenes to bibenzyl derivatives has been demonstrated. The catalytic protocol employed the Hantzsch ester, potassium phosphate, and a photoactive cyclometalated IrIII complex catalyst. A photochemical quantum yield as high as 20 % was obtained. The catalytic mechanism was investigated in detail by performing photophysical and electrochemical measurements, as well as by quantum chemical calculations. The results suggest that two-electron mediation might be responsible for the improved photon economy. The reaction protocol was compatible with halomethyl arenes that contain a variety of functional groups. Finally, the synthetic utility of our protocol was demonstrated by the preparation of a natural dihydrostilbenoid, brittonin A.

8.
J Org Chem ; 81(16): 7072-9, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27257986

RESUMO

Photoredox catalysis has emerged as a valuable alternative to dark-state catalysis. For the full potential of photoredox catalysis to be utilized, it is imperative to make use of low-energy photons in photoinduced radical processes. We have demonstrated that the use of oxalate as a coreactant provides a useful principle for the photocatalytic production of trifluoromethyl radicals (•CF3) from CF3I upon green or red LED photoirradiation of narrow-bandgap photocatalysts. The photocatalytic cycle involves a radical anion of carbon dioxide (CO2(•-)) as a reductant for CF3I, which is generated through photoinduced oxidative decarboxylation of oxalate. Electrochemical characterizations and steady-state and transient photophysical investigations were performed to reveal that there are two photoinduced electron-transfer pathways for oxalate-mediated •CF3 generation.

9.
Sci Rep ; 5: 18185, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26677949

RESUMO

The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...