Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(20)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843277

RESUMO

Improving the management of metastasis in pancreatic neuroendocrine tumors (PanNETs) is critical, as nearly half of patients with PanNETs present with liver metastases, and this accounts for the majority of patient mortality. We identified angiopoietin-2 (ANGPT2) as one of the most upregulated angiogenic factors in RNA-Seq data from human PanNET liver metastases and found that higher ANGPT2 expression correlated with poor survival rates. Immunohistochemical staining revealed that ANGPT2 was localized to the endothelial cells of blood vessels in PanNET liver metastases. We observed an association between the upregulation of endothelial ANGPT2 and liver metastatic progression in both patients and transgenic mouse models of PanNETs. In human and mouse PanNET liver metastases, ANGPT2 upregulation coincided with poor T cell infiltration, indicative of an immunosuppressive tumor microenvironment. Notably, both pharmacologic inhibition and genetic deletion of ANGPT2 in PanNET mouse models slowed the growth of PanNET liver metastases. Furthermore, pharmacologic inhibition of ANGPT2 promoted T cell infiltration and activation in liver metastases, improving the survival of mice with metastatic PanNETs. These changes were accompanied by reduced plasma leakage and improved vascular integrity in metastases. Together, these findings suggest that ANGPT2 blockade may be an effective strategy for promoting T cell infiltration and immunostimulatory reprogramming to reduce the growth of liver metastases in PanNETs.


Assuntos
Neoplasias Hepáticas , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Angiopoietina-2/genética , Angiopoietina-2/metabolismo , Células Endoteliais/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Camundongos Transgênicos , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Linfócitos T/patologia , Microambiente Tumoral
2.
Cancer Res ; 83(12): 1968-1983, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37093870

RESUMO

T-cell position in the tumor microenvironment determines the probability of target encounter and tumor killing. CD8+ T-cell exclusion from the tumor parenchyma is associated with poor response to immunotherapy, and yet the biology that underpins this distinct pattern remains unclear. Here we show that the vascular destabilizing factor angiopoietin-2 (ANGPT2) causes compromised vascular integrity in the tumor periphery, leading to impaired T-cell infiltration to the tumor core. The spatial regulation of ANGPT2 in whole tumor cross-sections was analyzed in conjunction with T-cell distribution, vascular integrity, and response to immunotherapy in syngeneic murine melanoma models. T-cell exclusion was associated with ANGPT2 upregulation and elevated vascular leakage at the periphery of human and murine melanomas. Both pharmacologic and genetic blockade of ANGPT2 promoted CD8+ T-cell infiltration into the tumor core, exerting antitumor effects. Importantly, the reversal of T-cell exclusion following ANGPT2 blockade not only enhanced response to anti-PD-1 immune checkpoint blockade therapy in immunogenic, therapy-responsive mouse melanomas, but it also rendered nonresponsive tumors susceptible to immunotherapy. Therapeutic response after ANGPT2 blockade, driven by improved CD8+ T-cell infiltration to the tumor core, coincided with spatial TIE2 signaling activation and increased vascular integrity at the tumor periphery where endothelial expression of adhesion molecules was reduced. These data highlight ANGPT2/TIE2 signaling as a key mediator of T-cell exclusion and a promising target to potentiate immune checkpoint blockade efficacy in melanoma. SIGNIFICANCE: ANGPT2 limits the efficacy of immunotherapy by inducing vascular destabilization at the tumor periphery to promote T-cell exclusion.


Assuntos
Angiopoietina-2 , Melanoma , Humanos , Camundongos , Animais , Angiopoietina-2/genética , Inibidores de Checkpoint Imunológico , Melanoma/terapia , Imunoterapia , Linfócitos T CD8-Positivos/metabolismo , Microambiente Tumoral
3.
J Cancer Res Clin Oncol ; 149(9): 5705-5715, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36547689

RESUMO

PURPOSE: NKG2A, an inhibitory receptor expressed on NK cells and T cells, leads to immune evasion by binding to HLA-E expressed on cancer cells. Here, we investigated the relationship between HLA-E surface expression on head and neck squamous cell carcinoma (HNSCC) cell lines and the efficacy of monalizumab, an NKG2A inhibitor, in promoting NK cell activity. METHODS: Six HNSCC cell lines were used as target cells. After exposure to IFN- γ, HLA-E surface expression on HNSCC cell lines was measured by flow cytometry. Peripheral blood mononuclear cells (PBMCs) from healthy donors and isolated NK cells were used as effector cells. NK cells were stimulated by treatment with IL-2 and IL-15 for 5 days, and NK cell-induced cytotoxicity was analyzed by CD107a degranulation and 51Cr release assays. RESULTS: We confirmed that HLA-E expression was increased by IFN-γ secreted by NK cells and that HLA-E expression was different for each cell line upon exposure to IFN-γ. Cell lines with high HLA-E expression showed stronger inhibition of NK cell cytotoxicity, and efficacy of monalizumab was high. Combination with cetuximab increased the efficacy of monalizumab. In addition, stimulation of isolated NK cells with IL-2 and IL-15 increased the efficacy of monalizumab, even in the HLA-E low groups. CONCLUSION: Monalizumab efficacy was correlated with HLA-E surface expression and was enhanced when NK cell activity was increased by cetuximab or cytokines. These results suggest that monalizumab may be potent against HLA-E-positive tumors and that monalizumab efficacy could be improved by promoting NK cell activity.


Assuntos
Neoplasias de Cabeça e Pescoço , Interleucina-15 , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Cetuximab/farmacologia , Interleucina-15/farmacologia , Interleucina-2/farmacologia , Leucócitos Mononucleares , Linhagem Celular Tumoral , Células Matadoras Naturais , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Antígenos HLA-E
4.
Sci Rep ; 12(1): 12546, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869130

RESUMO

Immune checkpoint inhibitors and vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR TKIs) are mainstream treatments for renal cell carcinoma (RCC). Both T cells and macrophages infiltrate the tumor microenvironment of RCC. CD47, an immune checkpoint of macrophages, transmits the "don't eat me" signal to macrophages. We propose a novel therapeutic strategy that activates the antitumor effect of macrophages. We found that CD47 was expressed in patients with RCC, and high CD47 expression was indicative of worse overall survival in datasets from The Cancer Genome Atlas. We observed that CD47-blocking antibodies enhanced the antitumor effect of macrophages against human RCC cell lines. Trogocytosis, rather than phagocytosis, occurred and was promoted by increased cell-to-cell contact between macrophages and RCC cells. Trogocytosis induced by CD47 blockade occurred in the presence of CD11b integrin signaling in macrophages and was augmented when RCC cells were exposed to VEGFR TKIs, except for sunitinib. In conclusion, this study presents evidence that anti-CD47 blocking antibodies improve the antitumor effect of macrophages in RCC. In combination with VEGFR TKIs, CD47 blockade is a potential therapeutic strategy for patients with RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Anticorpos Bloqueadores/farmacologia , Antígenos de Diferenciação/metabolismo , Antígeno CD47/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Macrófagos/metabolismo , Fagocitose , Receptores Imunológicos/metabolismo , Trogocitose , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
J Thorac Oncol ; 16(11): 1859-1871, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34242789

RESUMO

INTRODUCTION: EGFRT790M mostly exists subclonally and is acquired as the most common mechanism of resistance to EGFR tyrosine kinase inhibitors (TKIs). Nevertheless, because de novo EGFRT790M-mutant NSCLC is rare, little is known on acquired resistance mechanisms to third-generation EGFR TKIs. METHODS: Acquired resistance mechanisms were analyzed using tumor and plasma samples before and after third-generation EGFR TKI treatment in four patients with de novo EGFRT790M-mutant NSCLC. Genetic alterations were analyzed by whole-exome sequencing, targeted sequencing, fluorescence in situ hybridization, and droplet digital PCR. MTORL1433S, confirmed for oncogenicity using the Ba/F3 system, was reproduced in H1975 cell lines using CRISPR/Cas9-RNP. RESULTS: Of seven patients with NSCLC with de novo EGFRT790M/L858R mutation, four (LC1-4) who received third-generation EGFR TKIs acquired resistance after achieving a partial response (median = 27 mo, range: 17-48 mo). Novel MTORL1433S and EGFRC797S/L798I mutations in cis, MET amplification, and EGFRC797S mutation were identified as acquired resistance mechanisms to third-generation EGFR TKIs. The MTORL1433S mutation was oncogenic in Ba/F3 models and revealed resistance to osimertinib through AKT signaling activation in NCI-H1975 cells harboring the MTORL1433S mutation edited by CRISPR/Cas9 (half-maximal inhibitory concentration, 800 ± 67 nM). Osimertinib in combination with mTOR inhibitors abrogated acquired resistance to osimertinib. CONCLUSIONS: Activation of bypass pathways and the EGFRC797S or EGFRC797S/L798I mutation were identified as acquired resistance mechanisms to third-generation EGFR TKIs in patients with NSCLC with de novo EGFRT790M mutation. In addition, MTORL1433S- and EGFRL858R/T790M-mutant NSCLC cells were sensitive to osimertinib plus mTOR inhibitors.


Assuntos
Receptores ErbB , Neoplasias Pulmonares , Compostos de Anilina , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Humanos , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
6.
Cell Rep ; 34(8): 108780, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33626347

RESUMO

CHD8 (chromodomain helicase DNA-binding protein 8) is a chromatin remodeler associated with autism spectrum disorders. Homozygous Chd8 deletion in mice leads to embryonic lethality, making it difficult to assess whether CHD8 regulates brain development and whether CHD8 haploinsufficiency-related macrocephaly reflects normal CHD8 functions. Here, we report that homozygous conditional knockout of Chd8 restricted to neocortical glutamatergic neurons causes apoptosis-dependent near-complete elimination of neocortical structures. These mice, however, display normal survival and hyperactivity, anxiolytic-like behavior, and increased social interaction. They also show largely normal auditory function and moderately impaired visual and motor functions but enhanced whisker-related somatosensory function. These changes accompany thalamic hyperactivity, revealed by 15.2-Tesla fMRI, and increased intrinsic excitability and decreased inhibitory synaptic transmission in thalamic ventral posterior medial (VPM) neurons involved in somatosensation. These results suggest that excitatory neuronal CHD8 critically regulates neocortical development through anti-apoptotic mechanisms, neocortical elimination distinctly affects cognitive behaviors and sensory-motor functions in mice, and Chd8 haploinsufficiency-related macrocephaly might represent compensatory responses.


Assuntos
Comportamento Animal , Cognição , Proteínas de Ligação a DNA/metabolismo , Atividade Motora , Neocórtex/enzimologia , Neurônios/metabolismo , Núcleos Ventrais do Tálamo/metabolismo , Vibrissas/inervação , Animais , Apoptose , Mapeamento Encefálico , Proteínas de Ligação a DNA/genética , Feminino , Genótipo , Ácido Glutâmico/metabolismo , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neocórtex/patologia , Neocórtex/fisiopatologia , Neurônios/patologia , Fenótipo , Córtex Sensório-Motor/metabolismo , Córtex Sensório-Motor/fisiopatologia , Comportamento Social , Transmissão Sináptica , Núcleos Ventrais do Tálamo/diagnóstico por imagem , Núcleos Ventrais do Tálamo/fisiopatologia
7.
J Immunother Cancer ; 8(2)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32830112

RESUMO

BACKGROUND: Although programmed cell death-1/programmed death-ligand 1 (PD-L1) inhibitors show remarkable antitumor activity, a large portion of patients with cancer, even those with high PD-L1-expressing tumors, do not respond to their effects. Most PD-L1 inhibitors contain modified fragment crystallizable region (Fc) receptor binding sites to prevent antibody-dependent cellular cytotoxicity (ADCC) against PD-L1-expressing non-tumor cells. However, natural killer (NK) cells have specific antitumor activity in the presence of tumor-targeting antibody through ADCC, which could enhance NK cell-induced cytotoxicity. We evaluated the antitumor efficacy of ADCC via anti-PD-L1 monoclonal antibodies (mAbs) and NK cells against several PD-L1-positive cancer cell lines. METHODS: Various cancer cell lines were used as target cell lines. Surface PD-L1 expression was analyzed by flow cytometry. IMC-001 and anti-hPD-L1-hIgG1 were tested as anti-PD-L1 mAbs with ADCC and atezolizumab as an anti-PD-L1 mAb without ADCC. NK cell cytotoxicity was measured by 51Cr-release assay and CD107a degranulation assay. Also, live cell imaging was performed to evaluate cytotoxicity in a single-cell level. NK-92-CD16 (CD16-transduced NK-92 cell line) and peripheral blood mononuclear cells from healthy donors, respectively, were used as an effector cell. FcγRIIIa (CD16a)-V158F genotyping was performed for healthy donors. RESULTS: We demonstrated that the cytotoxicity of NK-92-CD16 cells toward PD-L1-positive cancer cell lines was significantly enhanced in the presence of anti-PD-L1 mAb with ADCC. We also noted a significant increase in primary human NK cell cytotoxicity against PD-L1-positive human cancer cells when cocultured with anti-PD-L1 mAb with ADCC. Moreover, NK cells expressing a FCGR3A high-affinity genotype displayed higher anti-PD-L1 mAb-mediated ADCC lysis of tumor cells than donors with a low-affinity genotype. CONCLUSION: These results suggest that NK cells induce an ADCC response in combination with anti-PD-L1 mAbs, which helps promote ADCC antitumor activity against PD-L1-positive tumors. This study provides support for NK cell immunotherapy against high PD-L1-expressing tumors in combination with ADCC through anti-PD-L1 mAbs.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/genética , Imunoterapia/métodos , Células Matadoras Naturais/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Masculino
8.
EMBO J ; 39(11): e104150, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32347567

RESUMO

Alternative splicing regulates trans-synaptic adhesions and synapse development, but supporting in vivo evidence is limited. PTPδ, a receptor tyrosine phosphatase adhering to multiple synaptic adhesion molecules, is associated with various neuropsychiatric disorders; however, its in vivo functions remain unclear. Here, we show that PTPδ is mainly present at excitatory presynaptic sites by endogenous PTPδ tagging. Global PTPδ deletion in mice leads to input-specific decreases in excitatory synapse development and strength. This involves tyrosine dephosphorylation and synaptic loss of IL1RAPL1, a postsynaptic partner of PTPδ requiring the PTPδ-meA splice insert for binding. Importantly, PTPδ-mutant mice lacking the PTPδ-meA insert, and thus lacking the PTPδ interaction with IL1RAPL1 but not other postsynaptic partners, recapitulate biochemical and synaptic phenotypes of global PTPδ-mutant mice. Behaviorally, both global and meA-specific PTPδ-mutant mice display abnormal sleep behavior and non-REM rhythms. Therefore, alternative splicing in PTPδ regulates excitatory synapse development and sleep by modulating a specific trans-synaptic adhesion.


Assuntos
Proteína Acessória do Receptor de Interleucina-1/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Fases do Sono , Sinapses/metabolismo , Animais , Proteína Acessória do Receptor de Interleucina-1/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Tirosina Fosfatases/genética , Sinapses/genética
9.
Front Mol Neurosci ; 12: 250, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680855

RESUMO

Netrin-G ligand-1 (NGL-1), encoded by Lrrc4c, is a post-synaptic adhesion molecule implicated in various brain disorders, including bipolar disorder, autism spectrum disorder, and developmental delay. Although previous studies have explored the roles of NGL-1 in the regulation of synapse development and function, the importance of NGL-1 for specific behaviors and the nature of related neural circuits in mice remain unclear. Here, we report that mice lacking NGL-1 (Lrrc4c-/- ) show strong hyperactivity and anxiolytic-like behavior. They also display impaired spatial and working memory, but normal object-recognition memory and social interaction. c-Fos staining under baseline and anxiety-inducing conditions revealed suppressed baseline neuronal activity as well as limited neuronal activation in widespread brain regions, including the anterior cingulate cortex (ACC), motor cortex, endopiriform nucleus, bed nuclei of the stria terminalis, and dentate gyrus. Neurons in the ACC, motor cortex, and dentate gyrus exhibit distinct alterations in excitatory synaptic transmission and intrinsic neuronal excitability. These results suggest that NGL-1 is important for normal locomotor activity, anxiety-like behavior, and learning and memory, as well as synapse properties and excitability of neurons in widespread brain regions under baseline and anxiety-inducing conditions.

10.
Front Cell Neurosci ; 13: 458, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649512

RESUMO

Shank3, an abundant excitatory postsynaptic scaffolding protein, has been associated with multiple brain disorders, including autism spectrum disorders (ASD) and Phelan-McDermid syndrome (PMS). However, how cell type-specific Shank3 deletion affects disease-related neuronal and brain functions remains largely unclear. Here, we investigated the impacts of Shank3 deletion in glutamatergic neurons on synaptic and behavioral phenotypes in mice and compared results with those previously obtained from mice with global Shank3 mutation and GABAergic neuron-specific Shank3 mutation. Neuronal excitability was abnormally increased in layer 2/3 pyramidal neurons in the medial prefrontal cortex (mPFC) in mice with a glutamatergic Shank3 deletion, similar to results obtained in mice with a global Shank3 deletion. In addition, excitatory synaptic transmission was abnormally increased in layer 2/3 neurons in mice with a global, but not a glutamatergic, Shank3 deletion, suggesting that Shank3 in glutamatergic neurons are important for the increased neuronal excitability, but not for the increased excitatory synaptic transmission. Neither excitatory nor inhibitory synaptic transmission was altered in the dorsal striatum of Shank3-deficient glutamatergic neurons, a finding that contrasts with the decreased excitatory synaptic transmission in global and Shank3-deficient GABAergic neurons. Behaviorally, glutamatergic Shank3-deficient mice displayed abnormally increased direct social interaction and repetitive self-grooming, similar to global and GABAergic Shank3-deficient mice. These results suggest that glutamatergic and GABAergic Shank3 deletions lead to distinct synaptic and neuronal changes in cortical layer 2/3 and dorsal striatal neurons, but cause similar social and repetitive behavioral abnormalities likely through distinct mechanisms.

11.
Front Mol Neurosci ; 12: 119, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156385

RESUMO

Netrin-G ligand-1 (NGL-1), also known as LRRC4C, is a postsynaptic densities (PSDs)-95-interacting postsynaptic adhesion molecule that interacts trans-synaptically with presynaptic netrin-G1. NGL-1 and its family member protein NGL-2 are thought to promote excitatory synapse development through largely non-overlapping neuronal pathways. While NGL-2 is critical for excitatory synapse development in specific dendritic segments of neurons in an input-specific manner, whether NGL-1 has similar functions is unclear. Here, we show that Lrrc4c deletion in male mice moderately suppresses excitatory synapse development and function, but surprisingly, does so in an input-independent manner. While NGL-1 is mainly detected in the stratum lacunosum moleculare (SLM) layer of the hippocampus relative to the stratum radiatum (SR) layer, NGL-1 deletion leads to decreases in the number of PSDs in both SLM and SR layers in the ventral hippocampus. In addition, both SLM and SR excitatory synapses display suppressed short-term synaptic plasticity in the ventral hippocampus. These morphological and functional changes are either absent or modest in the dorsal hippocampus. The input-independent synaptic changes induced by Lrrc4c deletion involve abnormal translocation of NGL-2 from the SR to SLM layer. These results suggest that Lrrc4c deletion moderately suppresses hippocampal excitatory synapse development and function in an input-independent manner.

12.
PLoS Biol ; 17(6): e2005326, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31166939

RESUMO

Netrin-G ligand-3 (NGL-3) is a postsynaptic adhesion molecule known to directly interact with the excitatory postsynaptic scaffolding protein postsynaptic density-95 (PSD-95) and trans-synaptically with leukocyte common antigen-related (LAR) family receptor tyrosine phosphatases to regulate presynaptic differentiation. Although NGL-3 has been implicated in the regulation of excitatory synapse development by in vitro studies, whether it regulates synapse development or function, or any other features of brain development and function, is not known. Here, we report that mice lacking NGL-3 (Ngl3-/- mice) show markedly suppressed normal brain development and postnatal survival and growth. A change of the genetic background of mice from pure to hybrid minimized these developmental effects but modestly suppressed N-methyl-D-aspartate (NMDA) receptor (NMDAR)-mediated synaptic transmission in the hippocampus without affecting synapse development, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR)-mediated basal transmission, and presynaptic release. Intriguingly, long-term depression (LTD) was near-completely abolished in Ngl3-/- mice, and the Akt/glycogen synthase kinase 3ß (GSK3ß) signaling pathway, known to suppress LTD, was abnormally enhanced. In addition, pharmacological inhibition of Akt, but not activation of NMDARs, normalized the suppressed LTD in Ngl3-/- mice, suggesting that Akt hyperactivity suppresses LTD. Ngl3-/- mice displayed several behavioral abnormalities, including hyperactivity, anxiolytic-like behavior, impaired spatial memory, and enhanced seizure susceptibility. Among them, the hyperactivity was rapidly improved by pharmacological NMDAR activation. These results suggest that NGL-3 regulates brain development, Akt/GSK3ß signaling, LTD, and locomotive and cognitive behaviors.


Assuntos
Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Proteínas Ligadas por GPI/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Encéfalo/metabolismo , Proteínas Ligadas por GPI/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Ligantes , Depressão Sináptica de Longo Prazo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Netrinas/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Sinapses/metabolismo , Sinapses/fisiologia , Transmissão Sináptica
13.
Cytotherapy ; 21(6): 603-611, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31010733

RESUMO

BACKGROUND: Treatment with tyrosine kinase inhibitors (TKIs) has improved the outcomes for patients with non-small cell lung cancer (NSCLC) harboring targetable driver mutations. However, acquired resistance to TKIs invariably develops within approximately 1 year of treatment by various mechanisms, including gatekeeper mutations, alternative pathway activation and histological transformations. Because immunotherapy is an option for patients with drug-resistant cancers, we generated several TKI-resistant NSCLC cell lines in vitro, and then evaluated the cytotoxicity of NK92-CD16 cells to these resistant cells. MATERIALS AND METHODS: TKI-resistant NSCLC cells (H3122CR1, H3122LR1, H3122CR1LR1, PC-9GR, PC-9ER, EBC-CR1 and EBC-CR2) were established from NCI-H3122 (EML4-ALK fusion), PC-9 (EGFR exon19 deletion) and EBC-1 (MET amplification) after continuous exposure to crizotinib, ceritinib, gefitinib, erlotinib and capmatinib. Expression of ligands for natural killer (NK) cell receptors and total EGFR were analyzed using flow cytometry. NK cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC) using anti-EGFR monoclonal antibody (mAb) cetuximab were measured using NK92-CD16 as effectors and detected using the 51Chromium-release assay. RESULTS: We found that NK92-CD16 cells preferentially killed TKI-resistant NSCLC cells when compared with their parental NSCLC cells. Mechanistically, intracellular adhesion molecule 1 (ICAM-1) was up-regulated in the TKI-resistant NSCLC cells and patients' tumors, and the ICAM-1 up-regulated cancer cells lines were less susceptible to NK cytotoxicity by blocking ICAM-1. Moreover, NK92-CD16 cell-induced cytotoxicity toward TKI-resistant NSCLC cells was enhanced in the presence of cetuximab, an EGFR-targeting mAb. CONCLUSION: These data suggest that combinational treatment with NK cell-based immunotherapy and cetuximab may be promising for patients with TKI-resistant NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/terapia , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/fisiologia , Neoplasias Pulmonares/terapia , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos/métodos , Cetuximab/farmacologia , Citotoxicidade Imunológica , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Células Matadoras Naturais/citologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Oncogenes , Inibidores de Proteínas Quinases/farmacologia , Receptores de IgG/genética
14.
Oncoimmunology ; 8(1): e1515057, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30546955

RESUMO

Major histocompatibility complex (MHC) class I downregulation is the primary immune evasion mechanism associated with failure in anti-PD-1/PD-L1 blockade therapies for cancer. Here, we examined the role of MEK signaling pathway inhibition in head and neck squamous cell carcinoma (HNSCC) both in vitro and in vivo. We found that trametinib, a small molecule inhibitor of MEK, significantly enhanced MHC class I and PD-L1 expression in human HNSCC cell lines, and this occurred via STAT3 activation. Trametinib also further upregulated the increase in CXCL9 and CXCL10 expression caused by IFN-γ in HNSCC cells, which is associated with T cell infiltration in tumor tissues. Finally, we evaluated the therapeutic efficacy of trametinib combined with an anti-PD-L1 monoclonal antibody in vivo, using SCCVII mouse syngeneic tumor model for HNSCC. While neither PD-L1 blockade nor trametinib treatment alone affected tumor growth, the combined therapy significantly delayed tumor growth. Our results indicate that in the combined therapy trametinib increases CD8+ T cell infiltration in the tumor site and upregulates antigen presentation, and this may be associated with enhanced PD-L1 blockade efficacy. Furthermore, our results suggest that this combination would therapeutically benefit patients with HNSCC.

15.
Front Cell Neurosci ; 12: 341, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356810

RESUMO

Shank3 is an excitatory postsynaptic scaffolding protein implicated in multiple brain disorders, including autism spectrum disorders (ASD) and Phelan-McDermid syndrome (PMS). Although previous neurobiological studies on Shank3 and Shank3-mutant mice have revealed diverse roles of Shank3 in the regulation of synaptic, neuronal and brain functions, whether Shank3 expression in specific cell types distinctly contributes to mouse phenotypes remains largely unclear. In the present study, we generated two Shank3-mutant mouse lines (exons 14-16) carrying global and GABA neuron-specific deletions and characterized their electrophysiological and behavioral phenotypes. These mouse lines show similar decreases in excitatory synaptic input onto dorsolateral striatal neurons. In addition, the abnormal social and locomotor behaviors observed in global Shank3-mutant mice are strongly mimicked by GABA neuron-specific Shank3-mutant mice, whereas the repetitive and anxiety-like behaviors are only partially mimicked. These results suggest that GABAergic Shank3 (exons 14-16) deletion has strong influences on striatal excitatory synaptic transmission and social and locomotor behaviors in mice.

16.
Nat Neurosci ; 21(9): 1218-1228, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30104731

RESUMO

Autism spectrum disorders (ASDs) are four times more common in males than in females, but the underlying mechanisms are poorly understood. We characterized sexually dimorphic changes in mice carrying a heterozygous mutation in Chd8 (Chd8+/N2373K) that was first identified in human CHD8 (Asn2373LysfsX2), a strong ASD-risk gene that encodes a chromatin remodeler. Notably, although male mutant mice displayed a range of abnormal behaviors during pup, juvenile, and adult stages, including enhanced mother-seeking ultrasonic vocalization, enhanced attachment to reunited mothers, and isolation-induced self-grooming, their female counterparts do not. This behavioral divergence was associated with sexually dimorphic changes in neuronal activity, synaptic transmission, and transcriptomic profiles. Specifically, female mice displayed suppressed baseline neuronal excitation, enhanced inhibitory synaptic transmission and neuronal firing, and increased expression of genes associated with extracellular vesicles and the extracellular matrix. Our results suggest that a human CHD8 mutation leads to sexually dimorphic changes ranging from transcription to behavior in mice.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Ligação a DNA/biossíntese , Expressão Gênica/fisiologia , Neurônios/fisiologia , Caracteres Sexuais , Animais , Ansiedade de Separação/genética , Ansiedade de Separação/psicologia , Proteínas de Ligação a DNA/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Feminino , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Apego ao Objeto , Transdução de Sinais/fisiologia , Comportamento Social , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Transcriptoma , Vocalização Animal
17.
Front Mol Neurosci ; 11: 209, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29970987

RESUMO

Shank2 is an abundant postsynaptic scaffolding protein implicated in neurodevelopmental and psychiatric disorders, including autism spectrum disorders (ASD). Deletion of Shank2 in mice has been shown to induce social deficits, repetitive behaviors, and hyperactivity, but the identity of the cell types that contribute to these phenotypes has remained unclear. Here, we report a conditional mouse line with a Shank2 deletion restricted to parvalbumin (PV)-positive neurons (Pv-Cre;Shank2fl/fl mice). These mice display moderate hyperactivity in both novel and familiar environments and enhanced self-grooming in novel, but not familiar, environments. In contrast, they showed normal levels of social interaction, anxiety-like behavior, and learning and memory. Basal brain rhythms in Pv-Cre;Shank2fl/fl mice, measured by electroencephalography, were normal, but susceptibility to pentylenetetrazole (PTZ)-induced seizures was decreased. These results suggest that Shank2 deletion in PV-positive neurons leads to hyperactivity, enhanced self-grooming and suppressed brain excitation.

18.
Paediatr Anaesth ; 27(7): 742-751, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28497474

RESUMO

BACKGROUND: The second trimester is a period of neurogenesis and neuronal migration, which can be affected by exposure to anesthetics. Studies also suggest that multiple exposures may have a greater impact on neurodevelopment. AIM: We investigated whether in utero single or multiple exposures to anesthetics caused long-term behavior changes. METHODS: Pregnant mice were randomly divided into four groups on gestational day 14 (GD 14). Mice in the Control × 1 group were exposed to 100% oxygen for 150 min. Mice in the Sevo × 1 group were also exposed to 100% oxygen for 150 min, except that 2.5% sevoflurane was added during the first 120 min. Mice in the Control × 3 and Sevo × 3 group were identically treated as Control × 1 and Sevo × 1 group for three consecutive days, respectively (GD 14-16). Behavioral tests were performed only with the male offspring at the age of 2-4 months. Synaptic plasticity was also compared by inducing long-term potentiation in acute hippocampal slices. RESULTS: Single or multiple sevoflurane exposures in pregnant mice during the second trimester did not cause long-lasting behavioral consequences or changes in long-term synaptic plasticity of their offspring. CONCLUSION: Our study suggests that neither single nor multiple exposures of mice to sevoflurane during the fetal developmental period induces long-term behavioral dysfunctions or affects long-term synaptic plasticity. Additional studies focusing on early stages of neurodevelopment are necessary to confirm the effects of sevoflurane exposure during pregnancy.


Assuntos
Anestésicos Inalatórios/toxicidade , Comportamento Animal/efeitos dos fármacos , Éteres Metílicos/toxicidade , Efeitos Tardios da Exposição Pré-Natal/psicologia , Animais , Animais Recém-Nascidos , Ansiedade/induzido quimicamente , Ansiedade/psicologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Medo/efeitos dos fármacos , Feminino , Asseio Animal/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Gravidez , Sevoflurano , Comportamento Social
19.
Anesthesiology ; 126(2): 288-299, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27922840

RESUMO

BACKGROUND: Anesthesia during the synaptogenic period induces dendritic spine formation, which may affect neurodevelopment. The authors, therefore, evaluated whether changes in synaptic transmission after dendritic spine formation induced by sevoflurane were associated with long-term behavioral changes. The effects of sevoflurane on mitochondrial function were also assessed to further understand the mechanism behind spinogenesis. METHODS: Postnatal day 16 to 17 mice were exposed to sevoflurane (2.5% for 2 h), and synaptic transmission was measured in the medial prefrontal cortex 6 h or 5 days later. The expression of postsynaptic proteins and mitochondrial function were measured after anesthesia. Long-term behavioral changes were assessed in adult mice. RESULTS: Sevoflurane increased the expression of excitatory postsynaptic proteins in male and female mice (n = 3 to 5 per group). Sevoflurane exposure in male mice transiently increased miniature excitatory postsynaptic current frequency (control: 8.53 ± 2.87; sevoflurane: 11.09 ± 2.58) but decreased miniature inhibitory postsynaptic current frequency (control: 10.18 ± 4.66; sevoflurane: 6.88 ± 2.15). Unexpectedly, sevoflurane increased miniature inhibitory postsynaptic current frequency (control: 1.81 ± 1.11; sevoflurane: 3.56 ± 1.74) in female mice (neurons, n = 10 to 21 per group). Sevoflurane also increased mitochondrial respiration in male mice (n = 5 to 8 per group). However, such changes from anesthesia during the critical period did not induce long-term behavioral consequences. Values are presented as mean ± SD. CONCLUSIONS: Sevoflurane exposure during the critical period induces mitochondrial hyperactivity and transient imbalance of excitatory/inhibitory synaptic transmission, without long-lasting behavioral consequences. Further studies are needed to confirm sexual differences and to define the role of mitochondrial activity during anesthesia-induced spine formation.


Assuntos
Anestésicos Inalatórios/farmacologia , Comportamento Animal/efeitos dos fármacos , Éteres Metílicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sevoflurano , Fatores Sexuais
20.
Neuropharmacology ; 100: 27-39, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26275848

RESUMO

IRSp53 (also known as BAIAP2) is a multi-domain scaffolding and adaptor protein that has been implicated in the regulation of membrane and actin dynamics at subcellular structures, including filopodia and lamellipodia. Accumulating evidence indicates that IRSp53 is an abundant component of the postsynaptic density at excitatory synapses and an important regulator of actin-rich dendritic spines. In addition, IRSp53 has been implicated in diverse psychiatric disorders, including autism spectrum disorders, schizophrenia, and attention deficit/hyperactivity disorder. Mice lacking IRSp53 display enhanced NMDA (N-methyl-d-aspartate) receptor function accompanied by social and cognitive deficits, which are reversed by pharmacological suppression of NMDA receptor function. These results suggest the hypothesis that defective actin/membrane modulation in IRSp53-deficient dendritic spines may lead to social and cognitive deficits through NMDA receptor dysfunction. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.


Assuntos
Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Transtornos Mentais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Densidade Pós-Sináptica/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Membrana Celular/metabolismo , Espinhas Dendríticas/genética , Humanos , Transtornos Mentais/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Fenótipo , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...