Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172099, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580115

RESUMO

Until now, bacteria able to degrade, 3,3'-iminodipropionitrile (IDPN), a neurotoxin that destroys vestibular hair cells, causing ototoxicity, culminating in irreversible movement disorders, had never been isolated. The aim of this study was to isolate a novel IDPN-biodegrading microorganism and characterize its metabolic pathway. Enrichment was performed by inoculating activated sludge from a wastewater treatment bioreactor that treated IDPN-contaminated wastewater in M9 salt medium, with IDPN as the sole carbon source. A bacterial strain with a spherical morphology that could grow at high concentrations was isolated on a solid medium. Growth of the isolated strain followed the Monod kinetic model. Based on the 16S rRNA gene, the isolate was Paracoccus communis. Whole-genome sequencing revealed that the isolated P. communis possessed the expected full metabolic pathway for IDPN biodegradation. Transcriptome analyses confirmed the overexpression of the gene encoding hydantoinase/oxoprolinase during the exponential growth phase under IDPN-fed conditions, suggesting that the enzyme involved in cleaving the imine bond of IDPN may promote IDPN biodegradation. Additionally, the newly discovered P. communis isolate seems to metabolize IDPN through cleavage of the imine bond in IDPN via nitrilase, nitrile hydratase, and amidase reactions. Overall, this study lays the foundation for the application of IDPN-metabolizing bacteria in the remediation of IDPN-contaminated environments.


Assuntos
Biodegradação Ambiental , Reatores Biológicos , Nitrilas , Paracoccus , Eliminação de Resíduos Líquidos , Águas Residuárias , Nitrilas/metabolismo , Paracoccus/metabolismo , Paracoccus/genética , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , RNA Ribossômico 16S
2.
Infect Chemother ; 55(3): 394-396, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674338

RESUMO

The coronavirus disease 2019 pandemic has posed a significant threat not only to health outcomes but also to other societal sectors, including the educational system. Apart from youth education, colleges and universities are characterized by the integration of in-depth theoretical and practical knowledge in young adulthood. Our observations in this study suggest that college fairs, sports matches, and extracurricular activities can be safely resumed when population-level immunity has reached herd protection.

3.
PLoS One ; 18(8): e0290579, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37639398

RESUMO

Although detection of gram-negative bacteria (GNB) in body fluids is important for clinical purpose, traditional gram staining and other recently developed methods have inherent limitations in terms of accuracy, sensitivity, and convenience. To overcome the weakness, this study proposed a method detecting GNB based on specific binding of polymyxin B (PMB) to lipopolysaccharides (LPS) of GNB. Fluorescent microscopy demonstrated that surface immobilized PMB using a silane coupling agent was possible to detect fluorescent signal produced by a single Escherichia coli (a model GNB) cell. Furthermore, the signal was selective enough to differentiate between GNB and gram-positive bacteria. The proposed method could detect three cells per ml within one hour, indicating the method was very sensitive and the sensing was rapid. These results suggest that highly multifold PMB binding on each GNB cell occurred, as millions of LPS are present on cell wall of a GNB cell. Importantly, the principle used in this study was realized in a microfluidic chip for a sample containing E. coli cells suspended in porcine plasma, demonstrating its potential application to practical uses. In conclusion, the proposed method was accurate, sensitive, and convenient for detecting GNB, and could be applied clinically.


Assuntos
Líquidos Corporais , Escherichia coli , Animais , Suínos , Lipopolissacarídeos , Polimixina B , Corantes , Bactérias Gram-Negativas
4.
Sci Total Environ ; 872: 162180, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36775169

RESUMO

Biofilms consist of single or multiple species of bacteria embedded in extracellular polymeric substances (EPSs), which affect the increase in antibiotic resistance by restricting the transport of antibiotics to the bacterial cells. An alternative approach to treatment with antimicrobial agents is using biofilm inhibitors that regulate biofilm development without inhibiting bacterial growth. In this study, we found that citrus peel extract from Jeju Island (CPEJ) can inhibit bacterial biofilm formation. According to the results, CPEJ concentration-dependently reduces biofilm formation without affecting bacterial growth. Additionally, CPEJ decreased the production of extracellular polymeric substances but increased bacterial swarming motility. These results led to the hypothesis that CPEJ can reduce intracellular bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) concentration. The results showed that CPEJ significantly reduced the c-di-GMP level through increased phosphodiesterase activity. Altogether, these findings suggest that CPEJ as a biofilm inhibitor has new potential for pharmacological (e.g. drug and medication) and industrial applications (e.g. ship hulls, water pipes, and membrane processes biofouling control).


Assuntos
Proteínas de Bactérias , GMP Cíclico , Bactérias , Biofilmes
5.
Water Res ; 231: 119654, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702020

RESUMO

In a hydrogen-based membrane biofilm reactor (H2-MBfR), the biofilm thickness is considered to be one of the most important factors for denitrification. Thick biofilms in MBfRs are known for low removal fluxes owing to their resistance to substrate transport. In this study, the H2-MBfR was operated under various loading rates of oxyanions, such as NO3-N, SO4-S, and ClO4- at an H2 flux of 1.06 e- eq/m2-d. The experiment was initiated with NO3-N, SO4-S, and ClO4- loadings of 0.464, 0.026, and 0.211 e- eq/m2-d, respectively, at 20 °C. Under the most stressful conditions, the loading rates increased simultaneously to 1.911, 0.869, and 0.108 e- eq/m2-d, respectively, at 10 °C. We observed improved performance in significantly thicker biofilms (approximately 2.7 cm) compared to previous studies using a denitrifying H2-MBfR for 120 days. Shock oxyanion loadings led to a decrease in total nitrogen (TN) removal by 20 to 30%, but TN removal returned to 100% within a few days. Similarly, complete denitrification was observed, even at 10 °C. The protective function and microbial diversity of the thick biofilm may allow stable denitrification despite stress-imposing conditions. In the microbial community analysis, heterotrophs were dominant and acetogens accounted for 11% of the biofilm. Metagenomic results showed a high abundance of functional genes involved in organic carbon metabolism and homoacetogenesis. Owing to the presence of organic compounds produced by acetogens and autotrophs, heterotrophic denitrification may occur simultaneously with autotrophic denitrification. As a result, the total removal flux of oxyanions (1.84 e- eq/m2-d) far exceeded the H2 flux (1.06 e- eq/m2-d). Thus, the large accumulation of biofilms could contribute to good resilience and enhanced removal fluxes.


Assuntos
Desnitrificação , Hidrogênio , Reatores Biológicos , Nitratos/metabolismo , Biofilmes , Nitrogênio
6.
Bioresour Technol ; 364: 128115, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36252764

RESUMO

Direct interspecies electron transfer (DIET) is a syntrophic mechanism for electron transfer between exo- and endoelectrogens. Previous studies have demonstrated that methanogenesis performance was significantly improved via the DIET mechanism through conductive materials (CMs) under batch conditions with a single substrate, while that under continuous condition is still under investigation. To investigate how the DIET via CM on methanogenesis performance was changed in response to the different substrates (acetate versus glucose)-fed in continuous anaerobic bioreactors, continuous bioreactors were operated by cross-feeding with acetate and glucose. Acetate-fed conditions showed 0.40 day shorten lagtime, 1.88- and 1.22-folds higher methane production rate, and ultimate methane production than glucose-fed conditions, respectively. Burkholderiaceae- and Anaerolineaceae-related exo-electrogenic populations were enriched with low abundance of Geobacter species in batch reactors. Furthermore, influent substrates affected the distribution of the enriched populations. Taken together, the results suggested that different syntrophic associations contributed methane production by DIET in continuous bioreactors.

7.
Bioresour Technol ; 363: 127931, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36100185

RESUMO

The production of polyethylene terephthalate (PET) has drastically increased in the past half-century, reaching 30 million tons every year. The accumulation of this recalcitrant waste now threatens diverse ecosystems. Despite efforts to recycle PET wastes, its rate of recycling remains limited, as the current PET downcycling is mostly unremunerative. To address this problem, PET bio-upcycling, which integrates microbial depolymerization of PET followed by repolymerization of PET-derived monomers into value-added products, has been suggested. This article critically reviews current understanding of microbial PET hydrolysis, the metabolic mechanisms involved in PET degradation, PET hydrolases, and their genetic improvement. Furthermore, this review includes the use of meta-omics approaches to search PET-degrading microbiomes, microbes, and putative hydrolases. The current development of biosynthetic technologies to convert PET-derived materials into value-added products is also comprehensively discussed. The integration of various depolymerization and repolymerization biotechnologies enhances the prospects of a circular economy using waste PET.


Assuntos
Microbiota , Polietilenotereftalatos , Biotecnologia , Hidrolases/metabolismo , Polietilenotereftalatos/metabolismo , Reciclagem
8.
Microbiol Spectr ; 10(3): e0207621, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35575506

RESUMO

Streptococcus mutans is a representative biofilm-forming bacterium that causes dental caries through glucosyltransferase (GTF) activity. Glucans are synthesized from sucrose by GTFs and provide binding sites for S. mutans to adhere tightly to the tooth enamel. Therefore, if a novel compound that interferes with GTF function is developed, biofilm formation control in S. mutans would be possible. We discovered that raffinose, an oligosaccharide from natural products, strongly inhibited biofilm formation, GTF-related gene expression, and glucan production. Furthermore, biofilm inhibition on saliva-coated hydroxyapatite discs through the reduction of bacterial adhesion indicated the applicability of raffinose in oral health. These effects of raffinose appear to be due to its ability to modulate GTF activity in S. mutans. Hence, raffinose may be considered an antibiofilm agent for use as a substance for oral supplies and dental materials to prevent dental caries. IMPORTANCE Dental caries is the most prevalent infectious disease and is expensive to manage. Dental biofilms can be eliminated via mechanical treatment or inhibited using antibiotics. However, bacteria that are not entirely removed or are resistant to antibiotics can still form biofilms. In this study, we found that raffinose inhibited biofilm formation by S. mutans, a causative agent of dental caries, possibly through binding to GtfC. Our findings support the notion that biofilm inhibition by raffinose can be exerted by interference with GTF function, compensating for the shortcomings of existing commercialized antibiofilm methods. Furthermore, raffinose is an ingredient derived from natural products and can be safely utilized in humans; it has no smell and tastes sweet. Therefore, raffinose, which can control S. mutans biofilm formation, has been suggested as a substance for oral supplies and dental materials to prevent dental caries.


Assuntos
Produtos Biológicos , Cárie Dentária , Antibacterianos/farmacologia , Biofilmes , Cárie Dentária/prevenção & controle , Materiais Dentários/metabolismo , Materiais Dentários/farmacologia , Glucanos , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Humanos , Rafinose/metabolismo , Rafinose/farmacologia , Streptococcus mutans/metabolismo
9.
Bioresour Technol ; 352: 127079, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35367324

RESUMO

To apply the anammox processes into the mainstream of domestic wastewater treatment plants, two laboratory-scale sequence batch reactors have been developed and used with two different activated sludges seeded in each sequence batch reactors with gradually increases influent total nitrogen concentrations under low nitrogen loading rates. During 320 days of operation, both sequence batch reactors showed high specific anammox activity (0.68 - 0.75 kgN kg-1VSS d-1) and a nitrogen removal efficiency of 97.50%. To monitor changes in microbial community dynamics during enrichment, high-throughput sequencing analysis was performed. Members taxonomically affiliated with Candidatus Jettenia were markedly enriched and predominant in both sequence batch reactors in response to the increasing influent total nitrogen concentrations. These results suggest that Candidatus Jettenia might be a prominent anammox genus under low nitrogen loading rate with high total nitrogen concentration conditions and could be suitably applied to the mainstream process of domestic wastewater treatment systems.


Assuntos
Reatores Biológicos , Nitrogênio , Anaerobiose , Nitrogênio/análise , Oxirredução , Esgotos , Águas Residuárias/análise
10.
Antibiotics (Basel) ; 11(2)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35203876

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic gram-negative pathogen that can cause various infections, particularly in patients with compromised host defenses. P. aeruginosa forms biofilms and produces virulence factors through quorum sensing (QS) network, resulting in resistance to antibiotics. RhlI/RhlR, one of key QS systems in P. aeruginosa, is considered an attractive target for inhibiting biofilm formation and attenuating virulence factors. Several recent studies examined small molecules targeting the RhlI/RhlR system and their in vitro and in vivo biological activities. In this review, RhlR-targeted modulators, including agonists and antagonists, are discussed with particular focus on structure-activity relationship studies and outlook for next-generation anti-biofilm agents.

11.
Bioresour Technol ; 344(Pt B): 126350, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34813924

RESUMO

Anaerobic digestion (AD) is a technique that can be used to treat high concentrations of various organic wastes using a consortium of functionally diverse microorganisms under anaerobic conditions. Methane gas, a beneficial by-product of the AD process, is a renewable energy source that can replace fossil fuels following purification. However, detailed functional roles and metabolic interactions between microbial populations involved in organic waste removal and methanogenesis are yet to be known. Recent metagenomic approaches based on advanced high-throughput sequencing techniques have enabled the exploration of holistic microbial taxonomy and functionality of complex microbial populations involved in the AD process. Gene-centric and genome-centric analyses based on metagenome-assembled genomes are a platform that can be used to study the composition of microbial communities and their roles during AD. This review looks at how these up-to-date metagenomic analyses can be applied to promote our understanding and improved the development of the AD process.


Assuntos
Reatores Biológicos , Metagenoma , Anaerobiose , Metagenômica , Metano
12.
Microorganisms ; 9(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34946088

RESUMO

Outbreaks of 2-methylisoborneol (2-MIB) contamination in drinking water sources cause inconvenient odor issues in the water distribution system. In this study, microscopy-based isolation with physiological and molecular phylogenetic characterization were performed to investigate and characterize the 2-MIB odor producers that caused an odor problem in the freshwater system of the North Han River in the autumn of 2018. A benthic cyanobacterium was isolated from 2-MIB odor-issue freshwater samples and was found to be phylogenetically affiliated with Pseudanabaena yagii (99.66% sequence similarity), which was recorded in South Korea for the first time. The 2-MIB synthesis gene sequences from the odor-issue freshwater samples showed 100% similarity with those in the P. yagii strains. Protein sequences of 2-MIB synthase observed in the genome of the isolated strain showed structural and functional characteristics similar to those observed in other Pseudanabaena species. The 2-MIB production rate increased slowly during mat formation on the vessel wall; however, it rapidly increased after the temperature dropped. The 2-MIB gene was continuously expressed regardless of the temperature changes. These results suggest that the 2-MIB odor issue in the North Han River might be caused by the release of 2-MIB from the mat-forming P. yagii species in a low-temperature freshwater environment.

13.
Microbiol Spectr ; 9(2): e0019221, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34704784

RESUMO

Pseudomonas aeruginosa is a ubiquitous human pathogen that causes severe infections. Although antibiotics, such as tobramycin, are currently used for infection therapy, their antibacterial activity has resulted in the emergence of multiple antibiotic-resistant bacteria. The 6-gingerol analog, a structural derivative of the main component of ginger, is a quorum sensing (QS) inhibitor. However, it has a lower biofilm inhibitory activity than antibiotics and the possibility to cause toxicity in humans. Therefore, novel and more effective approaches for decreasing dosing concentration and increasing biofilm inhibitory activity are required to alleviate P. aeruginosa infections. In this study, a 6-gingerol analog was combined with tobramycin to treat P. aeruginosa infections. The combined treatment of 6-gingerol analog and tobramycin showed strong inhibitory activities on biofilm formation and the production of QS-related virulence factors of P. aeruginosa compared to single treatments. Furthermore, the combined treatment alleviated the infectivity of P. aeruginosa in an insect model using Tenebrio molitor larvae without inducing any cytotoxic effects in human lung epithelial cells. The 6-gingerol analog showed these inhibitory activities at much lower concentrations when used in combination with tobramycin. Adjuvant effects were observed through increased QS-disrupting processes rather than through antibacterial action. In particular, improved RhlR inactivation by this combination is a possible target for therapeutic development in LasR-independent chronic infections. Therefore, the combined treatment of 6-gingerol analog and tobramycin may be considered an effective method for treating P. aeruginosa infections. IMPORTANCE Pseudomonas aeruginosa is a pathogen that causes various infectious diseases through quorum-sensing regulation. Although antibiotics are mainly used to treat P. aeruginosa infections, they cause the emergence of resistant bacteria in humans. To compensate for the disadvantages of antibiotics and increase their effectiveness, natural products were used in combination with antibiotics in this study. We discovered that combined treatment with 6-gingerol analog from naturally-derived ginger substances and tobramycin resulted in more effective reductions of biofilm formation and virulence factor production in P. aeruginosa than single treatments. Our findings support the notion that when 6-gingerol analog is combined with tobramycin, the effects of the analog can be exerted at much lower concentrations. Furthermore, its improved LasR-independent RhlR inactivation may serve as a key target for therapeutic development in chronic infections. Therefore, the combined treatment of 6-gingerol analog and tobramycin is suggested as a novel alternative for treating P. aeruginosa infections.


Assuntos
Antibacterianos/uso terapêutico , Catecóis/uso terapêutico , Álcoois Graxos/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/uso terapêutico , Antibacterianos/efeitos adversos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Catecóis/efeitos adversos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética , Células Epiteliais/efeitos dos fármacos , Álcoois Graxos/efeitos adversos , Humanos , Pseudomonas aeruginosa/genética , Percepção de Quorum/efeitos dos fármacos , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Tobramicina/efeitos adversos
14.
J Hazard Mater ; 418: 126365, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34329019

RESUMO

As the most widely used anionic surfactant, linear alkylbenzene sulfonate (LAS) requires biological alkane degradation when it is treated using an activated sludge (AS) process in a wastewater treatment plant because of its structural carboxylic unavailability. As consumption of LAS is gradually increasing, LAS loading into the WWTP is accordingly increasing. However, fewer studies have examined the involvement of the AS microbial community in the LAS degradation. In this study, metagenomic approaches were used to define microbiomes involved in LAS degradation in AS, with a particular focus on ω-hydroxylation. The abundance and diversity of alkane-degrading genes were investigated, and these genes were integrated with reconstructed metagenome-assembled genomes (MAGs). Additionally, the association of functional genes and MAGs with respect to LAS degradation was investigated. The results showed that alkB and cytochrome P450 genes were only shared within specific MAGs. Unique sets of genes with diverse abundances were detected in each sample. The MAGs with the alkB and cytochrome P450 genes were strongly associated with the other MAGs and involved in positive commensal interactions. The findings provided significant insights into how the AS microbiomes, which have continuously treated anionic surfactants for decades, potentially metabolize LAS and interact with commensal bacteria.


Assuntos
Ácidos Alcanossulfônicos , Microbiota , Metagenoma , Microbiota/genética , Esgotos , Tensoativos
15.
Environ Sci Technol ; 55(19): 13219-13230, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34314168

RESUMO

Forward osmosis (FO) hybrid systems have the potential to simultaneously recover nutrients and water from wastewater. However, the lack of membranes with high permeability and selectivity has limited the development and scale-up of these hybrid systems. In this study, we fabricated a novel thin-film nanocomposite membrane featuring an interlayer of Ti3C2Tx MXene intercalated with carbon nanotubes (M/C-TFNi). Owing to the enhanced confinement effect on interfacial degassing and increased amine monomer sorption by the interlayer, the resulting M/C-TFNi FO membrane has a greater degree of cross-linking and roughness. In comparison with the thin-film composite (TFC) membrane without an interlayered structure, the M/C-TFNi membrane attained a water flux that was four times higher and a lower specific salt flux. Notably, the M/C-TFNi membrane exhibited excellent concentration efficiency for real municipal wastewater and enhanced rejection of ammonia nitrogen, which breaks the permeability-selectivity upper bound. This study provides a new avenue for the rational design and development of high-performance FO membranes for environmental applications.


Assuntos
Nanotubos de Carbono , Purificação da Água , Membranas Artificiais , Osmose , Titânio , Águas Residuárias
16.
Chemosphere ; 280: 130763, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33975240

RESUMO

Membrane fouling occurs when the operating flux exceeds a certain point (i.e., critical flux). Critical flux has therefore been widely adopted to determine the initial operating flux in membrane bioreactor (MBR) processes. The flux steeping method currently used to measure the critical flux is time-consuming and uneconomical. This study was conducted to develop a novel approach for the evaluation of critical flux. Given that particle fouling is dominant during the initial fouling stage, we hypothesized that particle properties may be closely related to critical flux. A critical flux prediction model with an R2 of 0.9 was therefore derived, which indicates that particle properties regulate critical flux. The results imply that most of the fouling potential during the early stages of operation is caused by SS, and that the formation of cakes that comprise large particles is the dominant fouling mechanism. The new method proposed in this study reduced the measurement cost and time to evaluate critical flux by 3.5-and 8 times, respectively, compared to the flux-stepping method. In terms of practical application, the applicability of the model equation was identified by system reliability analysis, which indicates that the system failure increases significantly as the standard deviation of the variables increases. This study demonstrated that the prediction of critical flux and system reliability can be achieved through particle characteristic measurement. A similar approach is expected to be employed in real MBR plants as an economical and convenient fouling control strategy to solve problems involving resource shortages.


Assuntos
Reatores Biológicos , Membranas Artificiais , Fenômenos Físicos , Reprodutibilidade dos Testes , Esgotos
17.
ACS Appl Mater Interfaces ; 13(14): 16906-16915, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33798334

RESUMO

Nanofiltration (NF) with high water flux and precise separation performance with high Li+/Mg2+ selectivity is ideal for lithium brine recovery. However, conventional polyamide-based commercial NF membranes are ineffective in lithium recovery processes due to their undesired Li+/Mg2+ selectivity. In addition, they are constrained by the water permeance selectivity trade-off, which means that a highly permeable membrane often has lower selectivity. In this study, we developed a novel nonpolyamide NF membrane based on metal-coordinated structure, which exhibits simultaneously improved water permeance and Li+/Mg2+ selectivity. Specifically, the optimized Cu-m-phenylenediamine (MPD) membrane demonstrated a high water permeance of 16.2 ± 2.7 LMH/bar and a high Li+/Mg2+ selectivity of 8.0 ± 1.0, which surpassed the trade-off of permeance selectivity. Meanwhile, the existence of copper in the Cu-MPD membrane further enhanced anti-biofouling property and the metal-coordinated nanofiltration membrane possesses a pH-responsive property. Finally, a transport model based on the Nernst-Planck equations has been developed to fit the water flux and rejection of uncharged solutes to the experiments conducted. The model had a deviation below 2% for all experiments performed and suggested an average pore radius of 1.25 nm with a porosity of 21% for the Cu-MPD membrane. Overall, our study provides an exciting approach for fabricating a nonpolyamide high-performance nanofiltration membrane in the context of lithium recovery.

18.
Bioresour Technol ; 332: 125100, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33838453

RESUMO

To investigate how the seed microbial community structure affects the improvement of methanogenesis efficiency through direct interspecies electron transfer (DIET), a biomethane potential (BMP) test was conducted using sludge collected from a total of six anaerobic digesters. DIET-stimulating microbial populations were investigated by 16S rRNA gene sequence analysis. Correlations between microbial community composition and methane production performance by DIET were analyzed. The methane production rate increased under all conditions when granular activated carbon (GAC) was injected regardless of the inoculum type. However, redundancy analysis indicated a significant correlation between the inoculum microbial community and lag time. In a network analysis, Methanolinea species distributed in the inocula formed a single modularity with lag time, suggesting that the methanogens in the inocula might reduce the lag time of methanogenesis through DIET. Overall, this study revealed that the inoculum microbial community composition is an important factor affecting methane production efficiency by DIET.


Assuntos
Metano , Microbiota , Anaerobiose , Reatores Biológicos , Transporte de Elétrons , Elétrons , RNA Ribossômico 16S/genética
19.
Chemosphere ; 271: 129879, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33736214

RESUMO

Membrane bioreactors (MBRs) are considered a promising tool for resource recovery in wastewater treatment. Nevertheless, membrane fouling is an inevitable phenomenon that deteriorates the MBR performance. Although many studies have attempted to elucidate the effect of sludge characteristics on MBR fouling, they posed certain limitations. Most of the previous studies focused on the initial sludge or employ the results of short-term batch tests without long-term transmembrane pressure (TMP) profiles in the interpretation of fouling behaviors. This study was conducted considering these limitations to determine the sludge characteristics most closely related to long-term TMP profiles and to identify their role in fouling behaviors. In long-term TMP profiles, critical time (tc; time to TMP jump) and fouling rates (the increase in the TMP slope) were used as fouling indexes, which were used to correlate with average values of sludge characteristics before and after experiments. According to the results, the concentration of the total soluble microbial product (SMP) and extracted extracellular polymeric substance (eEPS) in sludge significantly increased by 1.9 times and up to 28 times after experiment. The increase in the SMP and eEPS caused early TMP jumps and resulted in low-fouling rates by increasing particle size. Owing to the increase in the SMP and eEPS concentration, the origin of fouling potential was shifted from suspended solids to colloids and soluble materials. Fouling resistance caused by soluble material increased by up to 11.38 times.


Assuntos
Esgotos , Purificação da Água , Reatores Biológicos , Matriz Extracelular de Substâncias Poliméricas , Membranas Artificiais
20.
Microbes Environ ; 36(1)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33563869

RESUMO

Despite the importance of microbial communities in ecosystem functions, the mechanisms underlying the assembly of rare taxa over time are poorly understood. It remains largely unknown whether rare taxa exhibit similar assembly processes to common taxa in local communities. We herein retrieved the 16S rRNA sequences of bacteria collected bimonthly for 2 years from the Pohang wastewater treatment plant. The transient-rare taxa showed different abundance distributions from the common taxa. Transient-rare taxon assemblages also exhibited higher temporal variations than common taxon assemblages, suggesting the distinct ecological patterns of the two assemblages. A multivariate analysis revealed that environmental parameters accounted for 25.3 and 61.6% of temporal variations in the transient-rare and common taxon assemblages, respectively. The fitting of all observed taxa to a neutral community model revealed that 96.4% of the transient-rare taxa (relative abundance, 71.4%) and 73.3% of the common taxa (relative abundance, 45.6%) followed the model, suggesting that stochastic mechanisms were more important than deterministic ones in the assembly of the transient-rare taxa. Collectively, the present results indicate that the transient-rare bacterial taxa at the Pohang wastewater treatment plant differed from the common taxa in ecological patterns, suggesting that dispersal is a key process in their assembly.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Reatores Biológicos/microbiologia , Microbiota , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Esgotos/microbiologia , Águas Residuárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...