Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 403: 123804, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264906

RESUMO

Although various technologies are being developed in the construction industry, management technologies for achieving environmental sustainability in the local community are still lacking. As such, this study suggests future insights for the development of an automated intelligent environment management system for the promotion of environmental sustainability in the local community, through a systematic review of 1,707 relevant literature. The systematic review was conducted in two steps: (i) quantitative review: keyword co-occurrence and trend analysis; and (ii) qualitative review: a review on monitoring, evaluation, and improvement technologies. As a result, the research level related to the local-level pollutants (noise, vibration, and dust) was found to be quantitatively insufficient, and the limitations of the existing technologies for these pollutants were presented. Eventually, to overcome these limitations, new technologies and application strategies that can be applied to construction sites as future research roadmap to effectively manage the hazardous pollutants were proposed. Furthermore, an intelligent management system should be developed, and the management of environmental complaints is also necessary for environmental sustainability at the local level in the construction industry. As a fundamental study, this study could become a benchmark for future researches dealing with environmental sustainability and hazardous pollutants in the construction industry.

2.
J Hazard Mater ; 402: 123483, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32707465

RESUMO

The management of noise, vibration, and dust, which are hazardous pollutants from construction sites, is essential to minimize the health damage of the nearby residents and the economic damage of construction companies due to pollutants from construction sites. For the effective management of hazardous pollutants, their emissions from construction sites must be identified immediately and accurately. Therefore, this study developed a real-time automated monitoring system named "MOnitoring for Noise, Vibration, and Dust (MONVID)" for comprehensively measuring the hazardous environmental pollutants and managing them in real-time. Toward this end, the optimal design of MONVID was planned and customized considering mobility, usability, and economy. Also, for the field application of the developed MONVID, its feasibility was verified by comparing its techno-economic performance with that of the conventional measurement system through experiments. Based on the results of the experiment and performance evaluation, it was concluded that MONVID is a feasible and economical construction pollutant measurement system with reliable technical performance and improved mobility and usability compared to the conventional measurement system. This study has significant contributions to the development of the first platform (including hardware, sensor network, and software) for the integrated real-time automated monitoring of the environmental performance of construction sites.

3.
Sci Total Environ ; 674: 580-591, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31022547

RESUMO

The mega columns used in super-tall buildings are several meters in size; thus, a greater quantity of construction materials are required than for a general column. Considering the environmental impact, research on a green design model for super-tall buildings is necessary. This design model should minimize both CO2 emissions and cost in the mega-column construction and design phases with consideration of the member or building size. In this regard, a multi-objective green design model (MOGDM) capable of minimizing construction cost and reducing CO2 emissions is proposed in this study. The MOGDM is applied to the design of mega columns for a super-tall building and its performance is evaluated based on the average environmental impact reduction rate (AER) and the average increase-in-cost reduction rate (AICR); these indexes are developed to assess the CO2 emission and construction cost reduction capability. Under the loading scenarios considered in this study, the average AER and AICR for the MOGDM output are 6.76% and 58.02%, respectively. Thus, the evaluation results confirm that the MOGDM proposed in this study can effectively reduce CO2 emissions and cost in the design and construction phases of mega columns for super-tall buildings.

4.
Zookeys ; (709): 135-154, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29118640

RESUMO

Seventy-six species of fishes, representing 60 genera and 34 families, were recorded from tidal pools on Jeju Island, southern Korea. The major families in terms of species were the Gobiidae (11 species), Pomacentridae (8 species), Blenniidae (6 species), and Labridae (5 species). Thirty-nine species were classified as tropical, 26 as temperate and 11 as subtropical.

5.
Sensors (Basel) ; 15(4): 7728-41, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25831087

RESUMO

The safety of a multi-span waler beam subjected simultaneously to a distributed load and deflections at its supports can be secured by limiting the maximum stress of the beam to a specific value to prevent the beam from reaching a limit state for failure or collapse. Despite the fact that the vast majority of accidents on construction sites occur at waler beams in retaining wall systems, no safety monitoring model that can consider deflections at the supports of the beam is available. In this paper, a maximum stress estimation model for a waler beam based on average strains measured from vibrating wire strain gauges (VWSGs), the most frequently used sensors in construction field, is presented. The model is derived by defining the relationship between the maximum stress and the average strains measured from VWSGs. In addition to the maximum stress, support reactions, deflections at supports, and the magnitudes of distributed loads for the beam structure can be identified by the estimation model using the average strains. Using simulation tests on two multi-span beams, the performance of the model is evaluated by estimating maximum stress, deflections at supports, support reactions, and the magnitudes of distributed loads.


Assuntos
Modelos Teóricos , Estresse Mecânico
6.
Macromol Biosci ; 14(7): 943-52, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24740644

RESUMO

Oleyl dextran-coated magnetic nanoclusters (ODMCs) are fabricated for the accurate detection of macrophage-rich atherosclerotic plaques using magnetic resonance (MR) imaging. Dextran is introduced to the cluster surface of magnetic nanocrystals (MNCs) through self-assembly using amphiphilic oleic acid-conjugated dextran (ODex) to provide not only hydrophilicity but also a high affinity to macrophages. Enhanced magnetism of the ODMCs is engineered by optimizing the degree of substitution (DS) of the oleyl group in ODex and the concentration of ODex used for the synthesis of ODMC. Consequently, ODMCs exhibit significantly increased T2 relaxivity and excellent macrophage-targeting ability without cytotoxicity, in vitro. Moreover, in vivo T2-weighted MR imaging after intravenous injection of ODMCs into a rat artery balloon injury model demonstrates considerable MR contrast strength efficacy in the plaques of the injured carotid artery. These novel ODMCs may offer a highly efficient MR imaging nanoprobes for the selective diagnosis of atherosclerosis.


Assuntos
Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Nanotecnologia/métodos , Placa Aterosclerótica/diagnóstico , Polímeros/química , Animais , Linhagem Celular , Sobrevivência Celular , Dextranos/química , Fluorescência , Hidrodinâmica , Macrófagos/ultraestrutura , Nanopartículas de Magnetita/ultraestrutura , Masculino , Camundongos , Ácido Oleico/química , Tamanho da Partícula , Ratos Sprague-Dawley , Termogravimetria , Difração de Raios X
7.
Environ Sci Technol ; 48(8): 4604-12, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24635702

RESUMO

For the effective photovoltaic (PV) system, it is necessary to accurately determine the monthly average daily solar radiation (MADSR) and to develop an accurate MADSR map, which can simplify the decision-making process for selecting the suitable location of the PV system installation. Therefore, this study aimed to develop a framework for the mapping of the MADSR using an advanced case-based reasoning (CBR) and a geostatistical technique. The proposed framework consists of the following procedures: (i) the geographic scope for the mapping of the MADSR is set, and the measured MADSR and meteorological data in the geographic scope are collected; (ii) using the collected data, the advanced CBR model is developed; (iii) using the advanced CBR model, the MADSR at unmeasured locations is estimated; and (iv) by applying the measured and estimated MADSR data to the geographic information system, the MADSR map is developed. A practical validation was conducted by applying the proposed framework to South Korea. It was determined that the MADSR map developed through the proposed framework has been improved in terms of accuracy. The developed MADSR map can be used for estimating the MADSR at unmeasured locations and for determining the optimal location for the PV system installation.


Assuntos
Sistemas de Informação Geográfica , Modelos Teóricos , Luz Solar , Reprodutibilidade dos Testes , República da Coreia , Estações do Ano
8.
Sensors (Basel) ; 13(12): 17346-61, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24351640

RESUMO

Sensor technologies have been actively employed in structural health monitoring (SHM) to evaluate structural safety. To provide stable and real-time monitoring, a practical wireless sensor network system (WSNS) based on vibrating wire strain gauges (VWSGs) is proposed and applied to a building under construction. In this WSNS, the data measured from each VWSG are transmitted to the sensor node via a signal line and then transmitted to the master node through a short-range wireless communication module (operating on the Industrial, Scientific, and Medical (ISM) band). The master node also employs a long-range wireless communication module (Code Division Multiple Access-CDMA) to transmit the received data from the sensor node to a server located in a remote area, which enables a manager to examine the measured data in real time without any time or location restrictions. In this study, a total of 48 VWSGs, 14 sensor nodes, and seven master nodes were implemented to measure long-term strain variations of mega-trusses in an irregular large-scale building under construction. Based on strain data collected over a 16-month period, a quantitative evaluation of the construction process was performed to determine the aspects that exhibit the greatest influence on member behavior and to conduct a comparison with numerical simulation results. The effect of temperature stress on the structural elements was also analyzed. From these observations, the feasibility of a long-term WSNS based on VWSGs to evaluate the structural safety of an irregular building under construction was confirmed.

9.
Sensors (Basel) ; 13(12): 16090-104, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24287533

RESUMO

This paper proposes a wireless inclinometer sensor node for structural health monitoring (SHM) that can be applied to civil engineering and building structures subjected to various loadings. The inclinometer used in this study employs a method for calculating the tilt based on the difference between the static acceleration and the acceleration due to gravity, using a micro-electro-mechanical system (MEMS)-based accelerometer. A wireless sensor node was developed through which tilt measurement data are wirelessly transmitted to a monitoring server. This node consists of a slave node that uses a short-distance wireless communication system (RF 2.4 GHz) and a master node that uses a long-distance telecommunication system (code division multiple access-CDMA). The communication distance limitation, which is recognized as an important issue in wireless monitoring systems, has been resolved via these two wireless communication components. The reliability of the proposed wireless inclinometer sensor node was verified experimentally by comparing the values measured by the inclinometer and subsequently transferred to the monitoring server via wired and wireless transfer methods to permit a performance evaluation of the wireless communication sensor nodes. The experimental results indicated that the two systems (wired and wireless transfer systems) yielded almost identical values at a tilt angle greater than 1°, and a uniform difference was observed at a tilt angle less than 0.42° (approximately 0.0032° corresponding to 0.76% of the tilt angle, 0.42°) regardless of the tilt size. This result was deemed to be within the allowable range of measurement error in SHM. Thus, the wireless transfer system proposed in this study was experimentally verified for practical application in a structural health monitoring system.


Assuntos
Redes de Comunicação de Computadores/instrumentação , Sistemas Microeletromecânicos/instrumentação , Sistemas Microeletromecânicos/métodos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Tecnologia sem Fio/instrumentação , Aceleração
10.
Sensors (Basel) ; 13(11): 14321-38, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24284768

RESUMO

The automatic monitoring of shortenings of vertical members in high-rise buildings under construction is a challenging issue in the high-rise building construction field. In this study, a practical system for monitoring column shortening in a high-rise building under construction is presented. The proposed monitoring system comprises the following components: (1) a wireless sensing system and (2) the corresponding monitoring software. The wireless sensing system comprises the sensors and energy-efficient wireless sensing units (sensor nodes, master nodes, and repeater nodes), which automate the processes for measuring the strains of vertical members and transmitting the measured data to the remote server. The monitoring software enables construction administrators to monitor real-time data collected by the server via an Internet connection. The proposed monitoring system is applied to actual 66-floor and 72-floor high-rise buildings under construction. The system enables automatic and real-time measurements of the shortening of vertical members, which can result in more precise construction.

11.
Sensors (Basel) ; 13(11): 15489-503, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24233025

RESUMO

The outrigger truss system is one of the most frequently used lateral load resisting structural systems. However, little research has been reported on the effect of installation of outrigger trusses on improvement of lateral stiffness of a high-rise building through full-scale measurements. In this paper, stiffness changes of a high-rise building due to installation of outrigger trusses have been evaluated by measuring lateral displacements using a global positioning system (GPS). To confirm the error range of the GPS measurement system used in the full-scale measurement tests, the GPS displacement monitoring system is investigated through a free vibration test of the experimental model. Then, for the evaluation of lateral stiffness of a high-rise building under construction, the GPS displacement monitoring system is applied to measurements of lateral displacements of a 66-story high-rise building before and after installation of outrigger truss. The stiffness improvement of the building before and after the installation is confirmed through the changes of the natural frequencies and the ratios of the base shear forces to the roof displacements.

12.
Sensors (Basel) ; 13(10): 13204-16, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-24084114

RESUMO

This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.


Assuntos
Redes de Comunicação de Computadores/instrumentação , Materiais de Construção/análise , Lasers , Processamento de Sinais Assistido por Computador/instrumentação , Transdutores , Tecnologia sem Fio/instrumentação , Materiais de Construção/classificação , Desenho de Equipamento , Análise de Falha de Equipamento
13.
Sensors (Basel) ; 13(9): 12329-44, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24064600

RESUMO

Considering the characteristics of wind tunnel tests, a position measurement system that can minimize the effects on the flow of simulated wind must be established. In this study, a motion-capture camera was used to measure the displacement responses of structures in a wind tunnel test, and the applicability of the system was tested. A motion-capture system (MCS) could output 3D coordinates using two-dimensional image coordinates obtained from the camera. Furthermore, this remote sensing system had some flexibility regarding lab installation because of its ability to measure at relatively long distances from the target structures. In this study, we performed wind tunnel tests on a pylon specimen and compared the measured responses of the MCS with the displacements measured with a laser displacement sensor (LDS). The results of the comparison revealed that the time-history displacement measurements from the MCS slightly exceeded those of the LDS. In addition, we confirmed the measuring reliability of the MCS by identifying the dynamic properties (natural frequency, damping ratio, and mode shape) of the test specimen using system identification methods (frequency domain decomposition, FDD). By comparing the mode shape obtained using the aforementioned methods with that obtained using the LDS, we also confirmed that the MCS could construct a more accurate mode shape (bending-deflection mode shape) with the 3D measurements.


Assuntos
Interpretação de Imagem Assistida por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Lasers , Fotografação/instrumentação , Reologia/instrumentação , Transdutores , Vento , Desenho de Equipamento , Análise de Falha de Equipamento
14.
Sensors (Basel) ; 13(8): 9774-89, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23912426

RESUMO

As wireless sensor network (WSN)-based structural health monitoring (SHM) systems are increasingly being employed in civil infrastructures and building structures, the management of large numbers of sensing devices and the large amount of data acquired from WSNs will become increasingly difficult unless systematic expressions of the sensor network are provided. This study introduces a practical WSN for SHM that consists of sensors, wireless sensor nodes, repeater nodes, master nodes, and monitoring servers. This study also proposes a symbolic and graphical representation scheme (SGRS) for this system, in which the communication relationships and respective location information of the distributed sensing components are expressed in a concise manner. The SGRS was applied to the proposed WSN, which is employed in an actual large-scale irregular structure in which three types of sensors (75 vibrating wire strain gauges, 10 inclinometers, and three laser displacement sensors) and customized wireless sensor nodes are installed. The application results demonstrate that prompt identification of sensing units and effective management of the distributed sensor network can be realized from the SGRS. The results also demonstrate the superiority of the SGRS over conventional expression methods in which a box diagram or tree diagram representing the ID of sensors and data loggers is used.


Assuntos
Arquitetura de Instituições de Saúde/instrumentação , Armazenamento e Recuperação da Informação/métodos , Sistemas Microeletromecânicos/instrumentação , Simbolismo , Transdutores , Interface Usuário-Computador , Tecnologia sem Fio/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Arquitetura de Instituições de Saúde/métodos
15.
Sensors (Basel) ; 13(8): 9909-20, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23921825

RESUMO

A strain-based load identification model for beam structures subjected to multiple loads is presented. The number of sensors for the load identification model is the same as the number of load conditions acting on a beam structure. In the model, the contribution of each load to the strains measured by strain sensors is defined. In this paper, the longitudinal strains measured from multiplexed fiber Bragg grating (FBG) strain sensors are used in the load identification. To avoid the dependency on the selection of locations for FBG sensors installed on a beam structure, the measured strain is expressed by a general form of a strain sensing model defined by superimposing the distribution shapes for strains from multiple loads. Numerical simulation is conducted to verify the model. Then, the load identification model is applied to monitoring of applied loads on a 4 m-long steel beam subjected to two concentrated loads. In the experiment, seven FBG sensors and nine electrical strain gages (ESGs) were installed on the surface of the bottom flange. The experimental results indicate a good agreement between estimated loadings from the model and the loads applied by a hydraulic jack.


Assuntos
Desenho Assistido por Computador , Materiais de Construção/análise , Modelos Teóricos , Transdutores de Pressão , Força Compressiva , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Estresse Mecânico , Resistência à Tração
16.
Sensors (Basel) ; 13(8): 10931-43, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23966189

RESUMO

A practical data recovery method is proposed for the strain data lost during the safety monitoring of mega columns. The analytical relations among the measured strains are derived to recover the data lost due to unexpected errors in long-term measurement during construction. The proposed technique is applied to recovery of axial strain data of a mega column in an irregular building structure during construction. The axial strain monitoring using the wireless strain sensing system was carried out for one year and five months between 23 July 2010 and 22 February 2012. During the long-term strain sensing, three different types of measurement errors occurred. Using the recovery technique, the strain data that could not be measured at different intervals in the measurement were successfully recovered. It is confirmed that the problems that may occur during long-term wireless strain sensing of mega columns during construction could be resolved through the proposed recovery method.


Assuntos
Materiais de Construção/análise , Teste de Materiais/instrumentação , Transdutores , Tecnologia sem Fio/instrumentação , Força Compressiva , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais/métodos , Resistência à Tração
17.
Sensors (Basel) ; 13(7): 9085-103, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23860317

RESUMO

In this study, a practical and integrative SHM system was developed and applied to a large-scale irregular building under construction, where many challenging issues exist. In the proposed sensor network, customized energy-efficient wireless sensing units (sensor nodes, repeater nodes, and master nodes) were employed and comprehensive communications from the sensor node to the remote monitoring server were conducted through wireless communications. The long-term (13-month) monitoring results recorded from a large number of sensors (75 vibrating wire strain gauges, 10 inclinometers, and three laser displacement sensors) indicated that the construction event exhibiting the largest influence on structural behavior was the removal of bents that were temporarily installed to support the free end of the cantilevered members during their construction. The safety of each member could be confirmed based on the quantitative evaluation of each response. Furthermore, it was also confirmed that the relation between these responses (i.e., deflection, strain, and inclination) can provide information about the global behavior of structures induced from specific events. Analysis of the measurement results demonstrates the proposed sensor network system is capable of automatic and real-time monitoring and can be applied and utilized for both the safety evaluation and precise implementation of buildings under construction.


Assuntos
Arquitetura/instrumentação , Arquitetura/métodos , Redes de Comunicação de Computadores/instrumentação , Materiais de Construção/análise , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Tecnologia sem Fio/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Integração de Sistemas , Transdutores
18.
Sensors (Basel) ; 13(5): 5796-813, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23648650

RESUMO

As buildings become increasingly complex, construction monitoring using various sensors is urgently needed for both more systematic and accurate safety management and high-quality productivity in construction. In this study, a monitoring system that is composed of a laser displacement sensor (LDS) and a wireless sensor node was proposed and applied to an irregular building under construction. The subject building consists of large cross-sectional members, such as mega-columns, mega-trusses, and edge truss, which secured the large spaces. The mega-trusses and edge truss that support this large space are of the cantilever type. The vertical displacement occurring at the free end of these members was directly measured using an LDS. To validate the accuracy and reliability of the deflection data measured from the LDS, a total station was also employed as a sensor for comparison with the LDS. In addition, the numerical simulation result was compared with the deflection obtained from the LDS and total station. Based on these investigations, the proposed wireless displacement monitoring system was able to improve the construction quality by monitoring the real-time behavior of the structure, and the applicability of the proposed system to buildings under construction for the evaluation of structural safety was confirmed.

19.
Sensors (Basel) ; 13(5): 6746-58, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23698269

RESUMO

High-rise buildings subjected to lateral loads such as wind and earthquake loads must be checked not to exceed the limits on the maximum lateral displacement or the maximum inter-story drift ratios. In this paper, a sensing model for deformed shapes of a building structure in motion is presented. The deformed shape sensing model based on a 2D scanner consists of five modules: (1) module for acquiring coordinate information of a point in a building; (2) module for coordinate transformation and data arrangement for generation of time history of the point; (3) module for smoothing by adjacent averaging technique; (4) module for generation of the displacement history for each story and deformed shape of a building, and (5) module for evaluation of the serviceability of a building. The feasibility of the sensing model based on a 2D laser scanner is tested through free vibration tests of a three-story steel frame structure with a relatively high slenderness ratio of 5.0. Free vibration responses measured from both laser displacement sensors and a 2D laser scanner are compared. In the experimentation, the deformed shapes were obtained from three different methods: the model based on the 2D laser scanner, the direct measurement based on laser displacement sensors, and the numerical method using acceleration data and the displacements from GPS. As a result, it is confirmed that the deformed shape measurement model based on a 2D laser scanner can be a promising alternative for high-rise buildings where installation of laser displacement sensors is impossible.

20.
Nanoscale Res Lett ; 8(1): 149, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23547716

RESUMO

Targeted molecular imaging with hyaluronic acid (HA) has been highlighted in the diagnosis and treatment of CD44-overexpressing cancer. CD44, a receptor for HA, is closely related to the growth of cancer including proliferation, metastasis, invasion, and angiogenesis. For the efficient detection of CD44, we fabricated a few kinds of HA-modified MnFe2O4 nanocrystals (MNCs) to serve as specific magnetic resonance (MR) contrast agents (HA-MRCAs) and compared physicochemical properties, biocompatibility, and the CD44 targeting efficiency. Hydrophobic MNCs were efficiently phase-transferred using aminated polysorbate 80 (P80) synthesized by introducing spermine molecules on the hydroxyl groups of P80. Subsequently, a few kinds of HA-MRCAs were fabricated, conjugating different ratios of HA on the equal amount of phase-transferred MNCs. The optimized conjugation ratio of HA against magnetic content was identified to exhibit not only effective CD44 finding ability but also high cell viability through in vitro experiments. The results of this study demonstrate that the suggested HA-MRCA shows strong potential to be used for accurate tumor diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...