Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(37): 43933-43941, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37675887

RESUMO

Highly active, stable, and low-cost oxygen evolution reaction (OER) electrocatalysts are urgently needed for the realization of large-scale industrial hydrogen production via water electrolysis. Layered double hydroxides (LDHs) stand out as one of the most promising nonprecious electrocatalysts worth pursuing. Here, a hierarchical heterogeneous Ni2+Fe3+@Ni2+Fe2+ LDH was successfully synthesized via a sequential electrodeposition technique using separate electrolytes containing iron precursors with different valence states (Fe2+, Fe3+). The underlying highly crystalline Ni2+Fe2+ LDH nanosheet array provides a large surface for the catalytically more active Ni2+Fe3+ LDH overlayer with low crystallinity. The resulting Ni2+Fe3+@Ni2+Fe2+ LDH demonstrates excellent OER activity with overpotentials of 218 and 265 mV to reach current densities of 10 and 100 mA cm-2, respectively, as well as good long-term stability for 30 h even at a high current density of 500 mA cm-2. In an overall water splitting, an electrolyzer using an electrocatalyst of Sn4P3/CoP2 as a cathode requires only a cell voltage of 1.55 V at 10 mA cm-2. Furthermore, the solar-powered overall water splitting system consisting of our electrolyzer and a perovskite/Si tandem solar cell exhibits a high solar-to-hydrogen conversion efficiency of 15.3%.

2.
J Phys Chem C Nanomater Interfaces ; 127(24): 11429-11437, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37377500

RESUMO

We investigate the role of grain structures in nanoscale carrier dynamics of polycrystalline solar cells. By using Kelvin probe force microscopy (KPFM) and near-field scanning photocurrent microscopy (NSPM) techniques, we characterize nanoscopic photovoltage and photocurrent patterns of inorganic CdTe and organic-inorganic hybrid perovskite solar cells. For CdTe solar cells, we analyze the nanoscale electric power patterns that are created by correlating nanoscale photovoltage and photocurrent maps on the same location. Distinct relations between the sample preparation conditions and the nanoscale photovoltaic properties of microscopic CdTe grain structures are observed. The same techniques are applied for characterization of a perovskite solar cell. It is found that a moderate amount of PbI2 near grain boundaries leads to the enhanced photogenerated carrier collections at grain boundaries. Finally, the capabilities and the limitations of the nanoscale techniques are discussed.

3.
Nano Converg ; 10(1): 22, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37209284

RESUMO

With photovoltaic performance of metal halide perovskite-based solar cells skyrocketing to approximately 26% and approaching the theoretical Shockley-Queisser limit of single junction solar cells, researchers are now exploring multi-junction tandem solar cells that use perovskite materials to achieve high efficiency next-generation photovoltaics. Various types of bottom subcells, including silicon solar cells used commercially in industry, chalcogenide thin film cells, and perovskite cells, have been combined with perovskite top subcells on the strength of facile fabrication methods based on solution processes. However, owing to the nature that photovoltages of the subcells are added up and the structure containing numerous layers, interfacial issues that cause open-circuit voltage (VOC) deficit need to be handled carefully. In addition, morphological issues or process compatibility make it difficult to fabricate solution-processed perovskite top cells. In this paper, we summarize and review the fundamentals and strategies to overcome interfacial issues in tandem solar cells for high efficiency and stability confronting this field.

4.
Small ; 18(11): e2105611, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35064754

RESUMO

Numerous studies have explored new materials for electrocatalysts, but it is difficult to discover materials that surpass the catalytic activity of current commercially available noble metal electrocatalysts. In contrast to conventional transition metal alloys, high-entropy alloys (HEAs) have immense potential to maximize their catalytic properties because of their high stability and compositional diversity as oxygen evolution reactions (OERs). This work presents medium-entropy alloys (MEAs) as OER electrocatalysts to simultaneously satisfy the requirement of high catalytic activity and long-term stability. The surface of MEA electrocatalyst is tailored to suit the OER via anodizing and cyclic voltammetry activation methods. Optimized electrical properties and hydrophilicity of the surface enable an extremely low overpotential of 187 mV for achieving the current density of 10 mA cm-2 alkaline media. Furthermore, a combined photovoltaic-electrochemical system with MEA electrocatalyst and a perovskite/Si tandem solar cell exhibits a solar-to-hydrogen conversion efficiency of 20.6% for an unassisted hydrogen generation system. These results present a new pathway for designing sustainable high efficiency water splitting cells.

5.
Small ; 17(39): e2103457, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34453489

RESUMO

To construct a highly efficient photoelectrochemical tandem device with silicon photocathode operating in alkaline conditions, it is desirable to develop stable and active catalysts which enable the photocathode to reliably perform under an alkaline environment. With nanostructured passivation layer and edge-exposed transition metal disulfides, silicon photocathode provides new opportunities for achieving unbiased alkaline solar water splitting. Here, the TiO2 nanorod arrays decorated by edge-rich MoS2 nanoplates are elaborately synthesized and deposited on p-Si. The vertically aligned TiO2 nanorods fully stabilize the Si surface and improve anti-reflectance. Moreover, MoS2 nanoplates with exposed edge sites provide catalytically active regions resulting in the kinetically favored hydrogen evolution under an alkaline environment. Interfacial energy band bending between p-Si and catalyst layers facilitates the transport of photogenerated electrons under steady-state illumination. Consequently, the MoS2 nanoplates/TiO2 nanorods/p-Si photocathode exhibits significantly improved photoelectrochemical-hydrogen evolution reaction (PEC-HER) performance in alkaline media with a high photocurrent density of 10 mA cm-2 at 0 V versus RHE and high stability. By integrating rationally designed photocathode with earth-abundant Fe60 (NiCo)30 Cr10 anode and perovskite/Si tandem photovoltaic cell, an unassisted alkaline solar water splitting is accomplished with a current density of 5.4 mA cm-2 corresponding to 6.6% solar-to-hydrogen efficiency, which is the highest among p-Si photocathodes.

6.
Science ; 368(6487): 155-160, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32217753

RESUMO

Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells.

7.
ACS Appl Mater Interfaces ; 11(37): 33835-33843, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31436403

RESUMO

Various noble metal-free electrocatalysts have been explored to enhance the overall water splitting efficiency. Ni-based compounds have attracted substantial attention for achieving efficient oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) catalysts. Here, we show superior electrocatalysts based on NiFe alloy electroformed by a roll-to-roll process. NiFe (oxy)hydroxide synthesized by an anodization method for the OER catalyst shows an overpotential of 250 mV at 10 mA cm-2, which is dramatically smaller than that of bare NiFe alloy with an overpotential of 380 mV at 10 mA cm-2. Electrodeposited NiMo films for the HER catalyst also exhibit a small overpotential of 100 mV at 10 mA cm-2 compared with that of bare NiFe alloy (550 mV at 10 mA cm-2). A combined spectroscopic and electrochemical analysis reveals a clear relationship between the surface chemistry of NiFe (oxy)hydroxide and the water splitting properties. These outstanding fully solution-processed catalysts facilitate superb overall water splitting properties due to enlarged active surfaces and highly active catalytic properties. We combined a solution-processed monolithic perovskite/Si tandem solar cell with MAPb(I0.85Br0.15)3 for the direct conversion of solar energy into hydrogen energy, leading to the high solar-to-hydrogen efficiency of 17.52%. Based on the cost-effective solution processes, our photovoltaic-electrocatalysis (PV-EC) system has advantages over latest high-performance solar water splitting systems.

8.
ACS Appl Mater Interfaces ; 9(48): 41898-41905, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29124921

RESUMO

We report the electrical properties of rubidium-incorporated methylammonium lead iodide ((RbxMA1-x)PbI3) films and the photovoltaic performance of (RbxMA1-x)PbI3 film-based p-i-n-type perovskite solar cells (PSCs). The incorporation of a small amount of Rb+ (x = 0.05) increases both the open circuit voltage (Voc) and the short circuit photocurrent density (Jsc) of the PSCs, leading to an improved power conversion efficiency (PCE). However, a high fraction of Rb+ incorporation (x = 0.1 and 0.2) decreases the Jsc and thus the PCE, which is attributed to the phase segregation of the single tetragonal perovskite phase to a MA-rich tetragonal perovskite phase and a RbPbI3 orthorhombic phase at high Rb fractions. Conductive atomic force microscopic and admittance spectroscopic analyses reveal that the single-phase (Rb0.05MA0.95)PbI3 film has a high electrical conductivity because of a reduced deep-level trap density. We also found that Rb substitution enhances the diode characteristics of the PSC, as evidenced by the reduced reverse saturation current (J0). The optimized (RbxMA1-x)PbI3 PSCs exhibited a PCE of 18.8% with negligible hysteresis in the photocurrent-voltage curve. The results from this work enhance the understanding of the effect of Rb incorporation into organic-inorganic hybrid halide perovskites and enable the exploration of Rb-incorporated mixed perovskites for various applications, such as solar cells, photodetectors, and light-emitting diodes.

9.
ChemSusChem ; 10(12): 2660-2667, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28489333

RESUMO

Given that the highest certified conversion efficiency of the organic-inorganic perovskite solar cell (PSC) already exceeds 22 %, which is even higher than that of the polycrystalline silicon solar cell, the significance of new scalable processes that can be utilized for preparing large-area devices and their commercialization is rapidly increasing. From this perspective, the electrodeposition method is one of the most suitable processes for preparing large-area devices because it is an already commercialized process with proven controllability and scalability. Here, a highly uniform NiOx layer prepared by electrochemical deposition is reported as an efficient hole-extraction layer of a p-i-n-type planar PSC with a large active area of >1 cm2 . It is demonstrated that the increased surface roughness of the NiOx layer, achieved by controlling the deposition current density, facilitates the hole extraction at the interface between perovskite and NiOx , and thus increases the fill factor and the conversion efficiency. The electrochemically deposited NiOx layer also exhibits extremely uniform thickness and morphology, leading to highly efficient and uniform large-area PSCs. As a result, the p-i-n-type planar PSC with an area of 1.084 cm2 exhibits a stable conversion efficiency of 17.0 % (19.2 % for 0.1 cm2 ) without showing hysteresis effects.


Assuntos
Compostos de Cálcio/química , Fontes de Energia Elétrica , Níquel/química , Óxidos/química , Energia Solar , Titânio/química , Eletroquímica
10.
Adv Mater ; 29(23)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28417505

RESUMO

Organic-inorganic perovskites with intriguing optical and electrical properties have attracted significant research interests due to their excellent performance in optoelectronic devices. Recent efforts on preparing uniform and large-grain polycrystalline perovskite films have led to enhanced carrier lifetime up to several microseconds. However, the mobility and trap densities of polycrystalline perovskite films are still significantly behind their single-crystal counterparts. Here, a facile topotactic-oriented attachment (TOA) process to grow highly oriented perovskite films, featuring strong uniaxial-crystallographic texture, micrometer-grain morphology, high crystallinity, low trap density (≈4 × 1014 cm-3 ), and unprecedented 9 GHz charge-carrier mobility (71 cm2 V-1 s-1 ), is demonstrated. TOA-perovskite-based n-i-p planar solar cells show minimal discrepancies between stabilized efficiency (19.0%) and reverse-scan efficiency (19.7%). The TOA process is also applicable for growing other state-of-the-art perovskite alloys, including triple-cation and mixed-halide perovskites.

11.
Nanoscale ; 8(22): 11403-12, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27216291

RESUMO

NiO is a wide band gap p-type oxide semiconductor and has potential for applications in solar energy conversion as a hole-transporting layer (HTL). It also has good optical transparency and high chemical stability, and the capability of aligning the band edges to the perovskite (CH3NH3PbI3) layers. Ultra-thin and un-doped NiO films with much less absorption loss were prepared by atomic layer deposition (ALD) with highly precise control over thickness without any pinholes. Thin enough (5-7.5 nm in thickness) NiO films with the thickness of few time the Debye length (LD = 1-2 nm for NiO) show enough conductivities achieved by overlapping space charge regions. The inverted planar perovskite solar cells with NiO films as HTLs exhibited the highest energy conversion efficiency of 16.40% with high open circuit voltage (1.04 V) and fill factor (0.72) with negligible current-voltage hysteresis.

12.
J Phys Chem Lett ; 7(10): 1845-51, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27117778

RESUMO

Low-temperature-processed perovskite solar cells (PSCs), especially those fabricated on flexible substrates, exhibit device performance that is worse than that of high-temperature-processed PSCs. One of the main reasons for the inferior performance of low-temperature-processed PSCs is the loss of photogenerated electrons in the electron collection layer (ECL) or related interfaces, i.e., indium tin oxide/ECL and ECL/perovskite. Here, we report that tailoring of the energy level and electron transporting ability in oxide ECLs using Zn2SnO4 nanoparticles and quantum dots notably minimizes the loss of photogenerated electrons in the low-temperature-fabricated flexible PSC. The proposed ECL with methylammonium lead halide [MAPb(I0.9Br0.1)3] leads to fabrication of significantly improved flexible PSCs with steady-state power conversion efficiency of 16.0% under AM 1.5G illumination of 100 mW cm(-2) intensity. These results provide an effective method for fabricating high-performance, low-temperature solution-processed flexible PSCs.

13.
Nanoscale ; 5(23): 11725-32, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24114150

RESUMO

In recent studies of inorganic materials for energy applications, surface modification processes have been shown to be among the most effective methods to enhance the performance of devices. Here, we demonstrate a facile nano-decoration method which is generally applicable to anatase TiO2 nanostructures, as well as a nano-decorated hierarchical TiO2 nanostructure which improves the energy conversion efficiency of a dye-sensitized solar cell (DSSC). Using a facile sol-gel method, 0-D, 1-D, and 2-D type anatase TiO2 nanostructures were decorated with 200 nm long anatase TiO2 nanorods to create various hierarchical nanostructures. A structural analysis reveals that the branched nanorod has a highly crystalline anatase phase with anisotropic growth in the [001] longitudinal direction. When one of the hierarchical structures, a chestnut bur-like nanostructure, was employed in a dye-sensitized solar cell as a scattering layer, offering increased dye-loading properties, preserving a sufficient level of light-scattering ability and preserving superior charge transport and recombination properties as well, the energy conversion efficiency of the cell improved by 19% (from 7.16% to 9.09%) compared to a cell with a 0-D TiO2 sphere as a scattering layer. This generally applicable anatase nanorod-decorating method offers potential applications in various energy-conversion applications, especially in DSSCs, quantum-dot solar cells, photoelectrochemical water-splitting devices, photocatalysis, and lithium ion batteries.


Assuntos
Nanotubos/química , Energia Solar , Titânio/química , Corantes/química , Propriedades de Superfície
14.
Dalton Trans ; 42(12): 4278-84, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23340880

RESUMO

Herein, we report on the synthesis of phase-pure rutile walnut-like TiO(2) (W-TiO(2)) spheres composed of single-crystalline nanorod-building blocks using a surfactant-free non-aqueous acidic modified "benzyl alcohol route". Based on the various HCl concentration- and reaction time-dependent experiments, an effect of hydrochloric acid on the phase formation mechanism in a non-aqueous system is suggested. As anodes for Li-ion batteries, the W-TiO(2) sphere electrodes exhibited superior cycling performance at a rate of 0.2 C without any conducting layers coated onto the anodes; this result is attributed to their high crystallinity and large surface area.

15.
J Nanosci Nanotechnol ; 12(6): 5091-5, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22905583

RESUMO

Niobium doped hierarchically organized TiO2 nanostructures composed of 20 nm size anatase nanocrystals were synthesized using pulsed laser deposition (PLD). The Nb doping concentration could be facilely controlled by adjusting the concentration of Nb in target materials. We could investigate the influence of Nb doping in the TiO2 photoelectrode on the cell performance of dye-sensitized solar cells (DSSCs) by the exclusion of morphological effects using the prepared Nb-doped TiO2 anostructures. We found no significant change in short circuit current density (Jsc) as a function of Nb doping concentration. However, open circuit voltage (Voc) and fill factor (FF) monotonously decrease with increasing Nb concentration. Dark current characteristics of the DSSCs reveal that the decrease in Voc and FF is attributed to the decrease in shunt resistance due to the increase in conductivity TiO2 by Nb doping. However, electrochemical impedance spectra (EIS) analysis at open circuit condition under illumination showed that the resistance at the TiO2/dye/electrolyte interface increases with Nb concentration, revealing that Nb doping suppress the charge recombination at the interface. In addition, electron life time obtained using characteristic frequency in Bode plot increases from 14 msec to 56 msec with increasing Nb concentration from 0 to 1.2 at%. This implies that the improved light harvesting can be achieved by increasing diffusion length through Nb-doping in the conventional TiO2 photoelectrode.


Assuntos
Corantes/química , Fontes de Energia Elétrica , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nióbio/química , Energia Solar , Desenho de Equipamento , Análise de Falha de Equipamento , Tamanho da Partícula
16.
Dalton Trans ; 40(26): 6901-5, 2011 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-21647496

RESUMO

We demonstrated the formation of monodispersed spherical aluminum hydrous oxide precursors with tunable sizes by controlling the variables of a forced hydrolysis method. The particle sizes of aluminum hydrous oxide precursors were strongly dependent on the molar ratio of the Al(3+) reactants (sulfates and nitrates). In addition, the systematic phase and morphological evolutions from aluminum hydrous oxide to γ-alumina (Al(2)O(3)) and finally to α-Al(2)O(3) through thermal dehydrogenation were characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). After annealing the amorphous aluminum hydrous oxide in air at 900 °C and 1100 °C for 1 h, we observed complete conversion to phase-pure γ- and α-Al(2)O(3), respectively, while maintaining monodispersity (125 nm, 195 nm, 320 nm, and 430 nm diameters were observed). Furthermore, both γ- and α-Al(2)O(3) were found to be mesoporous in structure, providing enhanced specific surface areas of 102 and 76 m(2) g(-1), respectively, based on the Brunauer-Emmett-Teller (BET) measurement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...