Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37761368

RESUMO

After three years of the SARS-CoV-2 pandemic, the demand for developing field-deployable point-of-care (PoC) molecular diagnostic tests has increased. Although RT-qPCR is the molecular diagnostic gold standard and is accurate, it is not readily applied to point-of-care testing (POCT). Meanwhile, rapid diagnostic kits have the disadvantage of low sensitivity. Recently, rapid isothermal nucleic acid amplification technology has emerged as an alternative for rapid diagnosis. Here, we developed a rapid SARS-CoV-2 reverse transcription loop-mediated isothermal amplification (RT-LAMP)-lateral flow assay (LFA) kit. This kit includes a Chelex-100/boiling nucleic acid extraction device and a one-step amplification detection apparatus capable of performing the entire process, from RNA extraction to detection, and diagnosing SARS-CoV-2 infection within 40 min without contamination. The detection limits of the rapid SARS-CoV-2 RT-LAMP-LFA kit were 100 plaque-forming units (PFUs) mL-1 and 10-1 PFU mL-1 for RNA samples extracted using the Chelex-100/boiling nucleic acid extraction device and commercial AdvansureTM E3 system, respectively. The sensitivity and specificity of the rapid SARS-CoV-2 RT-LAMP-LFA kit were 97.8% and 100%, respectively. Our SARS-CoV-2 RT-LAMP-LFA kit exhibited high sensitivity and specificity within 40 min without requiring laboratory instruments, suggesting that the kit could be used as a rapid POC molecular diagnostic test for SARS-CoV-2.

2.
Cell Tissue Res ; 389(2): 289-308, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35624315

RESUMO

Stem cells are known to have excellent regenerative ability, which is primarily facilitated by indirect paracrine factors, rather than via direct cell replacement. The regenerative process is mediated by the release of extracellular matrix molecules, cytokines, and growth factors, which are also present in the media during cultivation. Herein, we aimed to demonstrate the functionality of key factors and mechanisms in skin regeneration through the analysis of conditioned media derived from fetal stem cells. A series of processes, including 3D pellet cultures, filtration and lyophilization is developed to fabricate human fetal cartilage-derived progenitor cells-conditioned media (hFCPCs-CM) and its useful properties are compared with those of human bone marrow-derived MSCs-conditioned media (hBMSCs-CM) in terms of biochemical characterization, and in vitro studies of fibroblast behavior, macrophage polarization, and burn wound healing. The hFCPCs-CM show to be devoid of cellular components but to contain large amounts of total protein, collagen, glycosaminoglycans, and growth factors, including IGFBP-2, IGFBP-6, HGF, VEGF, TGF ß3, and M-CSF, and contain a specific protein, collagen alpha-1(XIV) compare with hBMSCs-CM. The therapeutic potential of hFCPCs-CM observes to be better than that of hBMSCs-CM in the viability, proliferation, and migration of fibroblasts, and M2 macrophage polarization in vitro, and efficient acceleration of wound healing and minimization of scar formation in third-degree burn wounds in a rat model. The current study shows the potential therapeutic effect of hFCPCs and provides a rationale for using the secretome released from fetal progenitor cells to promote the regeneration of skin tissues, both quantitatively and qualitatively. The ready-to-use product of human fetal cartilage-derived progenitor cells-conditioned media (hFCPCs-CM) are fabricated via a series of techniques, including a 3D culture of hFCPCs, filtration using a 3.5 kDa cutoff dialysis membrane, and lyophilization of the CM. hFCPCs-CM contains many ECM molecules and biomolecules that improves wound healing through efficient acceleration of M2 macrophage polarization and reduction of scar formation.


Assuntos
Queimaduras , Células-Tronco Fetais , Animais , Queimaduras/patologia , Queimaduras/terapia , Cicatriz/patologia , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Fetais/metabolismo , Fibroblastos/metabolismo , Humanos , Ratos , Pele/patologia , Células-Tronco , Cicatrização
3.
Am J Rhinol Allergy ; 36(2): 261-268, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34738483

RESUMO

BACKGROUND: Low-level light therapy (LLLT) is widely used for the photobiomodulation of cell behavior. Recent studies have shown that LLLT affects the proliferation and migration of various types of mesenchymal stem cells (MSCs). However, there is a lack of studies investigating the effect of LLT on enhancing the immunomodulatory properties of tonsil-derived MSCs (T-MSCs). OBJECTIVE: The aim of this study was to investigate the immunomodulatory effects of conditioned media from T-MSCs (T-MSCs-CM) treated with LLLT in allergic inflammation. METHODS: We isolated T-MSCs from human palatine tonsils and evaluated the ingredients of T-MSCs-CM. The effect of T-MSCs-CM treated with LLLT was evaluated in a mouse model of allergic rhinitis (AR). We randomly divided the mice into four groups (negative control, positive control, T-MSCs-CM alone, and T-MSCs-CM treated with LLLT). To elucidate the therapeutic effect, we assessed rhinitis symptoms, serum immunoglobulin (Ig), the number of inflammatory cells, and cytokine expression. RESULTS: We identified increased expression of immunomodulatory factors, such as HGF, TGF-ß, and PGE, in T-MSCs-CM treated with LLLT, compared to T-MSCs-CM without LLLT. Our animal study demonstrated reduced allergic symptoms and lower expression of total IgE and OVA-specific IgE in the LLLT-treated T-MSCs-CM group compared to the AR group and T-MSCs-CM alone. Moreover, we found that T-MSCs-CM treated with LLLT showed significantly decreased infiltration of eosinophils, neutrophils, and IL-17 cells in the nasal mucosa and reduced IL-4, IL-17, and IFN-γ expression in OVA-incubated splenocytes compared to the AR group. CONCLUSIONS: The present study suggests that T-MSCs-CM treated with LLLT may provide an improved therapeutic effect against nasal allergic inflammation than T-MSCs-CM alone.


Assuntos
Antialérgicos , Células-Tronco Mesenquimais , Rinite Alérgica , Animais , Antialérgicos/uso terapêutico , Citocinas/metabolismo , Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mucosa Nasal/metabolismo , Ovalbumina , Tonsila Palatina , Rinite Alérgica/tratamento farmacológico , Secretoma
4.
J Tissue Eng Regen Med ; 16(3): 279-289, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34788485

RESUMO

After an injury, soft tissue structures in the body undergo a natural healing process through specific phases of healing. Adhesions occur as abnormal attachments between tissues and organs through the formation of blood vessels and/or fibrinous adhesions during the regenerative repair process. In this study, we developed an adhesion-preventing membrane with an improved physical protection function by modifying the surface of chondrocyte-derived extracellular matrices (CECM) with anti-adhesion function. We attempted to change the negative charge of the CECM surface to neutral using poly-L-lysine (PLL) and investigated whether it blocked fibroblast adhesion to it and showed an improved anti-adhesion effect in animal models of tissue adhesion. The surface of the membrane was modified with PLL coating (PLL 10), which neutralized the surface charge. We confirmed that the surface characteristics except for the potential difference were maintained after the modification and tested cell attachment in vitro. Adhesion inhibition was identified in a peritoneal adhesion animal model at 1 week and in a subcutaneous adhesion model for 4 weeks. Neutralized CECM (N-CECM) suppressed fibroblast and endothelial cell adhesion in vitro and inhibited abdominal adhesions in vivo. The CECM appeared to actively inhibit the infiltration of endothelial cells into the injured site, thereby suppressing adhesion formation, which differed from conventional adhesion barriers in the mode of action. Furthermore, the N-CECM remained intact without degradation for more than 4 weeks in vivo and exerted anti-adhesion effects for a long time. This study demonstrated that PLL10 surface modification rendered a neutral charge to the polymer on the extracellular matrix surface, thereby inhibiting cell and tissue adhesion. Furthermore, this study suggests a means to modify extracellular matrix surfaces to meet the specific requirements of the target tissue in preventing post-surgical adhesions.


Assuntos
Condrócitos , Polilisina , Adesivos/análise , Adesivos/metabolismo , Animais , Células Endoteliais , Matriz Extracelular/metabolismo , Polilisina/análise , Polilisina/metabolismo , Polilisina/farmacologia , Aderências Teciduais/metabolismo , Aderências Teciduais/prevenção & controle
5.
Diagnostics (Basel) ; 11(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34829295

RESUMO

Malaria, caused by the parasite Plasmodium and transmitted by mosquitoes, is an epidemic that mainly occurs in tropical and subtropical regions. As treatments differ across species of malarial parasites, there is a need to develop rapid diagnostic methods to differentiate malarial species. Herein, we developed a multiplex malaria Pan/Pf/Pv/actin beta loop-mediated isothermal amplification (LAMP) to diagnose Plasmodium spp., P. falciparum, and P. vivax, as well as the internal control (IC), within 40 min. The detection limits of the multiplex malaria Pan/Pf/Pv/IC LAMP were 1 × 102, 1 × 102, 1 × 102, and 1 × 103 copies/µL for four vectors, including the 18S rRNA gene (Plasmodium spp.), lactate dehydrogenase gene (P. falciparum), 16S rRNA gene (P. vivax), and human actin beta gene (IC), respectively. The performance of the LAMP assay was compared and evaluated by evaluating 208 clinical samples (118 positive and 90 negative samples) with the commercial RealStar® Malaria S&T PCR Kit 1.0. The developed multiplex malaria Pan/Pf/Pv/IC LAMP assay showed comparable sensitivity (100%) and specificity (100%) with the commercial RealStar® Malaria S&T PCR Kit 1.0 (100%). These results suggest that the multiplex malaria Pan/Pf/Pv/IC LAMP could be used as a point-of-care molecular diagnostic test for malaria.

6.
J Tissue Eng Regen Med ; 15(11): 1023-1036, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34591344

RESUMO

Decellularized extra-cellular matrix (ECM) has been studied as an alternative to anti-adhesive biomaterials and cartilage acellular matrix (CAM) has been shown to inhibit postoperative adhesion in several organs. This study aimed to evaluate the suitability of glutaraldehyde (GA) crosslinked CAM-films as anti-adhesion barriers for peripheral nerve injury. The films were successfully fabricated and showed improved physical properties such as mechanical strength, swelling ratio, and lengthened degradation period while maintaining the microstructure and chemical composition after GA crosslinking. In the in vitro study of CAM-film, the dsDNA content met the recommended limit of decellularization and more than 70% of the major ECM components were preserved after decellularization. The adhesion and proliferation of seeded human umbilical vein endothelial cells and fibroblasts were significantly lower in CAM-film than in control, but similar with Seprafilm. However, the CAM-film extract did not show cytotoxicity. In the in vivo study, the peri-neural fibrosis was thicker, adhesion score higher, and peri-neural collagen fibers more abundant in the control group than in the CAM-film group. The total number of myelinated axons was significantly higher in the CAM-film group than in the control group. The inflammatory marker decreased with time in the CAM-film group compared to that in the control group, whereas the nerve regenerative marker expression was maintained. Moreover, the ankle angles at contracture and toe-off were higher in the CAM film-treated rats than in the control rats. GA-crosslinked CAM films may be used during peripheral nerve surgery to prevent peri-neural adhesion and enhance nerve functional recovery.


Assuntos
Cartilagem/química , Reagentes de Ligações Cruzadas/química , Matriz Extracelular/química , Glutaral/química , Regeneração Nervosa/fisiologia , Nervo Isquiático/lesões , Nervo Isquiático/fisiopatologia , Animais , Adesão Celular , Morte Celular , Proliferação de Células , Colágeno/metabolismo , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Nervo Isquiático/imunologia , Nervo Isquiático/patologia , Suínos
7.
Int J Stem Cells ; 14(2): 212-220, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33632992

RESUMO

BACKGROUND AND OBJECTIVES: The objective of this study was to investigate whether conditioned medium from photobiomodulation (PBM) irradiated adipose-derived stromal cell (ASC) spheroids prior to implanting could stimulate angiogenesis and tissue regeneration to improve functional recovery of skin tissue in an animal skin wound model. METHODS AND RESULTS: ASC were split and seeded on chitosan-coated 24 well plate at a density of 7.5×104 cells/cm2, and allowed to adhere at 37°C. Within 3 days of culture, ASC formed spheroids by PBM irradiation. Conditioned medium (CM) fractions were collected from the PBM-ASC to yield nor adipose-derived stromal cell spheroid (spheroid) and PBM-spheroid, respectively, centrifuged at 13,000 g at 4℃ for 10 min, and stored prior to use for ELISA, protein assay, or in vivo wound-healing assays. Phosphate-buffered saline, cultured CM from ASCs, PBM irradiation prior to implanting conditioned medium from ASC, cultured CM from ASC spheroid, and PBM-spheroid-CM (PSC) were transplanted into a wound bed in athymic mice to evaluate therapeutic effects of PSC in vivo. PSC enhanced wound closure in a skin injury model compared to PBS, CM, PBM-CM, and spheroid-CM. The density of vascular formations increased as a result of angiogenic factors released by the wound bed and enhanced tissue regeneration at the lesion site. CONCLUSIONS: These results indicate that implant of PSC can significantly improve functional recovery compared to PBS, CM, PBM-CM, or spheroid-CM treatment. Implant of PSC may be an effective form of paracrine mediated therapy for treating a wound bed.

8.
Tissue Eng Regen Med ; 18(1): 187-198, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33415672

RESUMO

BACKGROUND: Corneal scarring or disease may lead to severe corneal opacification and consequently, severe loss of vision due to the complete loss of corneal epithelial cells. We studied the use of epithelial cell sheets differentiated from fetal cartilage-derived stem cells (FCSC) to resurface damaged cornea. METHODS: The FCSC were isolated from the femoral head of immature cartilage tissue. The ability of the FCSCs to differentiate into corneal epithelial cells was evaluated using differentiation media at 2 days and 7 days post-seeding. A sheet fabricated of FCSCs was also used for the differentiation assay. The results of the in vitro studies were evaluated by immunocytochemistry and Western blots for corneal epithelial cell markers (CK3/12 and Pax6) and limbal epithelial stem cell markers (ABCG2 and p63). To test the material in vivo, an FCSC-sheet was applied as a treatment in a chemically burned rabbit model. The healing ability was observed histologically one week after treatment. RESULTS: The in vitro experiments showed morphological changes in the FCSCs at two and seven days of culture. The differentiated cells from the FCSCs or the FCSC-sheet expressed corneal epithelial cells markers. FCSC were create cell sheet that successfully differentiated into corneal epithelial cells and had sufficient adhesion so that it could be fused to host tissue after suture to the ocular surface with silk suture. The implanted cell sheet maintained its transparency and the cells were alive a week after implantation. CONCLUSION: These results suggest that carrier-free sheets fabricated of FCSCs have the potential to repair damaged corneal surfaces.


Assuntos
Epitélio Corneano , Adesivos , Animais , Cartilagem , Córnea , Coelhos , Células-Tronco
9.
J Cell Physiol ; 236(8): 5865-5874, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33432611

RESUMO

Despite studies reporting functional differentiation of liver cells, a three-dimensional, vascularized liver organ has yet to be developed from mesenchymal stem cells. We investigated whether treatment with photobiomodulation (PBM) before three-dimensional liver spheroid transplantation improved the recovery of liver function via stimulation of angiogenesis and hepatocyte differentiation. Liver spheroids composed of hepatic, endothelial, and mesenchymal cells were subjected to PBM therapy. To evaluate the in vivo therapeutic effect of the liver spheroids treated with PBM, phosphate-buffered saline, liver spheroid, and PBM-treated liver spheroid were transplanted into a damaged host liver using conventional chimeric mouse models. To further characterize the maturation of transplanted PBM-liver spheroid compared with the newly generated non-PBM-liver spheroid or human liver tissues, the expression profiles of mature liver signature genes were analyzed. Liver spheroids expressed hepatocyte growth factors, including vascular endothelial growth factor and angiogenic factors. The cells in liver spheroid compensated for the low viability and improved the function of hepatocytes. Here, we demonstrate the formation of vascularized and functional human liver spheroid from human adipose-derived stem cells by transplantation of liver tissue created in vitro. Albumin secretion by PBM-treated liver spheroid was higher on Day 28 compared with liver spheroid-seeded transplant group. PBM-liver spheroids serve as individual vascularization units, promoting the simultaneous development of new microvascular networks at different locations inside the implanted tissue constructs. The vasculature in the liver spheroid transplants became functional by connecting to the host vessels within 48 h. These PBM-liver spheroids may be useful in designing artificial three-dimensional hepatic tissue constructs and in cell therapy with limited numbers of human hepatocytes.


Assuntos
Tecido Adiposo/citologia , Hepatócitos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco/metabolismo , Adipócitos/metabolismo , Diferenciação Celular/fisiologia , Técnicas de Cocultura/métodos , Humanos , Fígado/metabolismo , Terapia com Luz de Baixa Intensidade/métodos , Neovascularização Fisiológica/fisiologia , Esferoides Celulares/metabolismo
10.
J Hazard Mater ; 399: 123047, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937711

RESUMO

To recover the spent vanadium compound, Rhodamine-B-based Schiff's base ligand (L1) was synthesized via ultrasonication process and was evaluated with vanadyl sulfate (VOSO4), which has shown considerable selectivity towards V(IV). The change of the solution color from colorless to pink is attributed to L1 after the reaction with vanadium ion owing to the successful formation of the vanadium complex and the opening of the spirolactam ring in the L1 structure. In FT-IR spectra, the vanadyl peaks are co-existed with the L1 structure, which confirmed the complex formation of the L1 with vanadium. Similarly, the binding energy of V(IV) was identified at 516.2 eV for V2p3/2 in XPS spectra. The new strategy for VOSO4 recovery was established through solvent extraction and acid leaching. After recovery process, the absence of vanadium peak in the XPS confirmed the complete removal of V(IV) from the complex. The recovered VOSO4 solution used as an electrolyte in vanadium redox flow battery (VRFB) systems, where the unit cell performance is comparable with the conventional electrolyte solution. The advantage of study is reuse of VOSO4 as a resource for energy storage applications.

11.
Sci Rep ; 10(1): 5722, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32235934

RESUMO

The aim of this study was to develop a fetal cartilage-derived progenitor cell (FCPC) based cartilage gel through self-assembly for cartilage repair surgery, with clinically useful properties including adhesiveness, plasticity, and continued chondrogenic remodeling after transplantation. Characterization of the gels according to in vitro self-assembly period resulted in increased chondrogenic features over time. Adhesion strength of the cartilage gels were significantly higher compared to alginate gel, with the 2-wk group showing a near 20-fold higher strength (1.8 ± 0.15 kPa vs. 0.09 ± 0.01 kPa, p < 0.001). The in vivo remodeling process analysis of the 2 wk cultured gels showed increased cartilage repair characteristics and stiffness over time, with higher integration-failure stress compared to osteochondral autograft controls at 4 weeks (p < 0.01). In the nonhuman primate investigation, cartilage repair scores were significantly better in the gel group compared to defects alone after 24 weeks (p < 0.001). Cell distribution analysis at 24 weeks showed that human cells remained within the transplanted defects only. A self-assembled, FCPC-based cartilage gel showed chondrogenic repair potential as well as adhesive properties, beneficial for cartilage repair.


Assuntos
Cartilagem Articular/citologia , Cartilagem Articular/transplante , Condrócitos/citologia , Condrogênese/fisiologia , Células-Tronco Fetais/citologia , Engenharia Tecidual/métodos , Alginatos , Animais , Condrócitos/transplante , Células-Tronco Fetais/transplante , Humanos , Macaca fascicularis , Masculino , Camundongos , Transplante de Células-Tronco
12.
Mediators Inflamm ; 2020: 6982438, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322164

RESUMO

METHODS: We isolated T-MSCs from human palatine tonsil and evaluated the ingredients of T-MSCs-CM. The effect of T-MSCs-CM was evaluated in the AR mouse model that was randomly divided into five groups (negative control, positive control, and T-MSCs-CM treated (0.1 mg, 1 mg, and 10 mg)). To investigate the therapeutic effect, we analyzed rhinitis symptoms, serum immunoglobulin (Ig), inflammatory cells, and cytokine expression. We also assessed T cell receptor signal, including MAP kinase (ERK/JNK), p65, and NFAT1. RESULTS: We identified the increment of TGF-ß1, PGE2, and HGF in the T-MSCs-CM. In an animal study, the T-MSCs-CM-treated group showed significantly reduced allergic symptoms and infiltration of eosinophils and neutrophils in the nasal mucosa, whereas there was no significant difference in total IgE and the OVA-specific IgE level. Additionally, we found that the 10 mg T-MSCs-CM-treated group showed a significantly decreased IL-4 mRNA expression, compared to the (+) Con group. In the analysis of T cell receptor signal, the phosphorylation of MAP kinases, translocation of p65, and activation of NFAT1 were inhibited after T-MSCs-CM. CONCLUSIONS: Our findings suggest that T-MSCs-CM showed a partial immunomodulatory effect on the AR mouse model by the inhibition of T cell activation via MAP kinase, p65, and NFAT1.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Mucosa Nasal/citologia , Tonsila Palatina/citologia , Rinite Alérgica/metabolismo , Rinite Alérgica/terapia , Animais , Western Blotting , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Imunoglobulina E/metabolismo , Camundongos Endogâmicos BALB C , Mucosa Nasal/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
13.
Tissue Eng Regen Med ; 17(2): 165-181, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32193874

RESUMO

BACKGROUND: To regenerate tissue-engineered cartilage as a source of material for the restoration of cartilage defects, we used a human fetal cartilage progenitor cell pellet to improve chondrogenesis and modulation of the immune response in an in vivo bioreactor (IVB) system. METHODS: IVB was buried subcutaneously in the host and then implanted into a cartilage defect. The IVB was composed of a silicone tube and a cellulose nano pore-sized membrane. First, fetal cartilage progenitor cell pellets were cultured in vitro for 3 days, then cultured in vitro, subcutaneously, and in an IVB for 3 weeks. First, the components and liquidity of IVB fluid were evaluated, then the chondrogenesis and immunogenicity of the pellets were evaluated using gross observation, cell viability assays, histology, biochemical analysis, RT-PCR, and Western blots. Finally, cartilage repair and synovial inflammation were evaluated histologically. RESULTS: The fluid color and transparency of the IVB were similar to synovial fluid (SF) and the components were closer to SF than serum. The IVB system not only promoted the synthesis of cartilage matrix and maintained the cartilage phenotype, it also delayed calcification compared to the subcutaneously implanted pellets. CONCLUSION: The IVB adopted to study cell differentiation was effective in preventing host immune rejection.


Assuntos
Reatores Biológicos , Celulose/química , Condrogênese , Imunidade , Engenharia Tecidual , Animais , Cartilagem Articular , Diferenciação Celular , Sobrevivência Celular , Condrócitos/citologia , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Coelhos , Células-Tronco , Líquido Sinovial
14.
Biomaterials ; 242: 119919, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32146371

RESUMO

In critical limb ischemia (CLI), overproduction of reactive oxygen species (ROS) and impairment of neovascularization contribute to muscle damage and limb loss. Cerium oxide nanoparticles (CNP, or 'nanoceria') possess oxygen-modulating properties which have shown therapeutic utility in various disease models. Here we show that CNP exhibit pro-angiogenic activity in a mouse hindlimb ischemia model, and investigate the molecular mechanism underlying the pro-angiogenic effect. CNP were injected into a ligated region of a femoral artery, and tissue reperfusion and hindlimb salvage were monitored for 3 weeks. Tissue analysis revealed stimulation of pro-angiogenic markers, maturation of blood vessels, and remodeling of muscle tissue following CNP administration. At a dose of 0.6 mg CNP, mice showed reperfusion of blood vessels in the hindlimb and a high rate of limb salvage (71%, n = 7), while all untreated mice (n = 7) suffered foot necrosis or limb loss. In vitro, CNP promoted endothelial cell tubule formation via the Ref-1/APE1 signaling pathway, and the involvement of this pathway in the CNP response was confirmed in vivo using immunocompetent and immunodeficient mice and by siRNA knockdown of APE1. These results demonstrate that CNP provide an effective treatment of CLI with excessive ROS by scavenging ROS to improve endothelial survival and by inducing Ref-1/APE1-dependent angiogenesis to revascularize an ischemic limb.

15.
PLoS One ; 14(5): e0208291, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31048887

RESUMO

Current strategies for cartilage cell therapy are mostly based on the use of autologous chondrocytes. However, these cells have limitations of a small number of cells available and of low chondrogenic ability, respectively. Many studies now suggest that fetal stem cells are more plastic than adult stem cells and can therefore more efficiently differentiate into target tissues. This study introduces, efficiency chondrogenic differentiation of fetal cartilage-derived progenitor cells (FCPCs) to adult cells can be achieved using a three-dimensional (3D) spheroid culture method based on silica nanopatterning techniques. In evaluating the issue of silica nano-particle size (Diameter of 300, 750, 1200 nm), each particle size was coated into the well of a 6-well tissue culture plate. FCPCs (2 x 105 cells/well in 6-well plate) were seeded in each well with chondrogenic medium. In this study, the 300 nm substrate that formed multi-spheroids and the 1200 nm substrate that showed spreading were due to the cell-cell adhesion force(via N-cadherin) and cell-substrate(via Integrin) force, the 750 nm substrate that formed the mass-aggregation can be interpreted as the result of cell monolayer formation through cell-substrate force followed by cell-cell contact force contraction. We conclude that our 3D spheroid culture system contributes to an optimization for efficient differentiation of FCPC, offers insight into the mechanism of efficient differentiation of engineered 3D culture system, and has promise for wide applications in regeneration medicine and drug discovery fields.


Assuntos
Cartilagem Articular/citologia , Dióxido de Silício/química , Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Condrócitos/citologia , Humanos , Imuno-Histoquímica , Microscopia Eletrônica de Varredura , Nanotecnologia/métodos , Engenharia Tecidual/métodos
16.
Artif Organs ; 43(3): 278-287, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30374978

RESUMO

This study introduces an implantable scaffold-free cartilage tissue construct (SF) that is composed of chondrocytes and their self-produced extracellular matrix (ECM). Chondrocytes were grown in vitro for up to 5 weeks and subjected to various assays at different time points (1, 7, 21, and 35 days). For in vivo implantation, full-thickness defects (n = 5) were manually created on the trochlear groove of the both knees of rabbits (16-week old) and 3 week-cultured SF construct was implanted as an allograft for a month. The left knee defects were implanted with 1, 7, and 21 days in vitro cultured scaffold-free engineered cartilages. (group 2, 3, and 4, respectively). The maturity of the engineered cartilages was evaluated by histological, chemical and mechanical assays. The repair of damaged cartilages was also evaluated by gross images and histological observations at 4, 8, and 12 weeks postsurgery. Although defect of groups 1, 2, and 3 were repaired with fibrocartilage tissues, group 4 (21 days) showed hyaline cartilage in the histological observation. In particular, mature matrix and columnar organization of chondrocytes and highly expressed type II collagen were observed only in 21 days in vitro cultured SF cartilage (group 4) at 12 weeks. As a conclusion, cartilage repair with maturation was recapitulated when implanted the 21 day in vitro cultured scaffold-free engineered cartilage. When implanting tissue-engineered cartilage, the maturity of the cartilage tissue along with the cultivation period can affect the cartilage repair.


Assuntos
Doenças das Cartilagens/cirurgia , Cartilagem Articular/cirurgia , Cultura Primária de Células/métodos , Engenharia Tecidual/métodos , Animais , Doenças das Cartilagens/patologia , Cartilagem Articular/citologia , Cartilagem Articular/lesões , Cartilagem Articular/patologia , Condrócitos/transplante , Modelos Animais de Doenças , Matriz Extracelular/transplante , Humanos , Masculino , Coelhos , Resultado do Tratamento
17.
Sensors (Basel) ; 18(10)2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30347732

RESUMO

Characterization of cellular dielectrophoretic (DEP) behaviors, when cells are exposed to an alternating current (AC) electric field of varying frequency, is fundamentally important to many applications using dielectrophoresis. However, to date, that characterization has been performed with monotonically increasing or decreasing frequency, not with successive increases and decreases, even though cells might behave differently with those frequency modulations due to the nonlinear cellular electrodynamic responses reported in previous works. In this report, we present a method to trace the behaviors of numerous cells simultaneously at the single-cell level in a simple, robust manner using dielectrophoretic tweezers-based force spectroscopy. Using this method, the behaviors of more than 150 cells were traced in a single environment at the same time, while a modulated DEP force acted upon them, resulting in characterization of nonlinear DEP cellular behaviors and generation of different cross-over frequencies in living cells by modulating the DEP force. This study demonstrated that living cells can have non-linear di-polarized responses depending on the modulation direction of the applied frequency as well as providing a simple and reliable platform from which to measure a cellular cross-over frequency and characterize its nonlinear property.

18.
PLoS One ; 13(9): e0202834, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30208116

RESUMO

Cartilage tissue engineering typically involves the combination of a biodegradable polymeric support material with chondrocytes. The culture environment in which cell-material constructs are created and stored is an important factor. The aim of the present study was to investigate the effects of combined stimuli on cartilage zonal organization which is important to maintain cartilage functions such as lubrication and cushion. For that purpose, we developed a joint mimicking loading system which was composed of compression and shear stress. To mimic the joint loading condition, we manufactured a stimuli system that has a device similar to the shape of a femoral condyle in human knee. The fibrin/hyaluronic acid mixture with chondrocytes were dropped into support made of silicon, and placed under the device. The cartilage explants were stimulated with the joint mimicking loading system for 1 hour per day over the course of 4 weeks. The amounts of GAG and collagen in the stimulated tissue were more than that of the static cultured tissue. Cells and collagen were arranged horizontally paralleled to the surface by stimuli, while it did not happen in the control group. The results of this study suggests that mechanical load exerting in the joint play a crucial role in stimulation of extracellular matrix (ECM) production as well as its functional rearrangement.


Assuntos
Cartilagem Articular/fisiologia , Engenharia Tecidual , Animais , Cartilagem Articular/patologia , Condrócitos/citologia , Condrócitos/metabolismo , Colágeno/análise , Força Compressiva , Matriz Extracelular/metabolismo , Glicosaminoglicanos/análise , Microscopia Eletrônica de Varredura , Resistência ao Cisalhamento , Estresse Mecânico , Suínos , Suporte de Carga
19.
J Nanosci Nanotechnol ; 18(2): 1323-1326, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448583

RESUMO

In the present work, a facile method for the preparation of nanocomposite adsorbents composed of carbon and iron compounds was demonstrated. The adsorbents were produced by pyrolyzing an iron-coordinated 1,8-diaminonaphthalene at various temperatures under an N2 stream (FeDN X, where X represents the pyrolysis temperatures 600, 700, and 800 °C). Prepared FeDNs were employed as adsorbents for the removal of Cr (VI). The Cr (VI)-adsorption behavior of FeDNs were well-fitted to a Langmuir isotherm model. Among the samples prepared, FeDN 700 showed the best performance for the removal of Cr (VI). In particular, the maximum adsorption capacity of FeDN 700 was evaluated to be 34.81 mg/g. A variety of characterizations were carried out to elucidate the relationship between physical properties of adsorbents and their adsorption behaviors.

20.
J Environ Manage ; 205: 192-200, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28985598

RESUMO

Alginate bead is a promising strontium (Sr) adsorbent in seawater, but highly concentrated Na ions caused over-swelling and damaged the hydrogel bead. To improve the mechanical stability of alginate bead, flexible foam-type zeolite-alginate composite was synthesized and Sr adsorption performance was evaluated in seawater; 1-10% zeolite immobilized alginate foams were prepared by freeze-dry technique. Immobilization of zeolite into alginate foam converted macro-pores to meso-pores which lead to more compact structure. It resulted in less swollen composite in seawater medium and exhibited highly improved mechanical stability compared with alginate bead. Besides, Sr adsorption efficiency and selectivity were enhanced by immobilization of zeolite in alginate foam due to the increase of Sr binding sites (zeolite). In particular, Sr selectivity against Na was highly improved. The 10% zeolite-alginate foam exhibited a higher log Kd of 3.3, while the pure alginate foam exhibited 2.7 in the presence of 0.1 M Na. Finally, in the real seawater, the 10% zeolite-alginate foam exhibited 1.5 times higher Sr adsorption efficiency than the pure alginate foam. This result reveals that zeolite-alginate foam composite is appropriate material for Sr removal in seawater due to its swelling resistance as well as improved Sr adsorption performance in complex media.


Assuntos
Radioisótopos de Estrôncio , Zeolitas , Adsorção , Alginatos , Ácido Glucurônico , Ácidos Hexurônicos , Água do Mar , Estrôncio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...