Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Eng Lett ; 14(1): 45-55, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38186945

RESUMO

Brain-computer interfaces (BCIs) enable communication between the brain and a computer and electroencephalography (EEG) has been widely used to implement BCIs because of its high temporal resolution and noninvasiveness. Recently, a tactile-based EEG task was introduced to overcome the current limitations of visual-based tasks, such as visual fatigue from sustained attention. However, the classification performance of tactile-based BCIs as control signals is unsatisfactory. Therefore, a novel classification approach is required for this purpose. Here, we propose TSANet, a deep neural network, that uses multibranch convolutional neural networks and a feature-attention mechanism to classify tactile selective attention (TSA) in a tactile-based BCI system. We tested TSANet under three evaluation conditions, namely, within-subject, leave-one-out, and cross-subject. We found that TSANet achieved the highest classification performance compared with conventional deep neural network models under all evaluation conditions. Additionally, we show that TSANet extracts reasonable features for TSA by investigating the weights of spatial filters. Our results demonstrate that TSANet has the potential to be used as an efficient end-to-end learning approach in tactile-based BCIs. Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-023-00309-4.

2.
Nanoscale ; 14(46): 17247-17253, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374132

RESUMO

Epitaxial growth of III-V materials on a CMOS-compatible Si (001) substrate enables the feasibility of mass production of low-cost and high-yield Si-based III-V optoelectronic devices. However, the material dissimilarities between III-V and group-IV materials induce several types of defects, especially threading dislocations (TDs) and antiphase boundaries (APBs). The presence of these defects is detrimental to the optoelectronic device performance and thus needs to be eliminated. In this paper, the mechanism of APB annihilation during the growth of GaAs on on-axis Si (001) is clarified, along with a detailed investigation of the interaction between TDs and the periodic {110} APBs. A significant reduction in the TD density ascribed to the presence of periodic APBs is discussed. This new observation opens the possibility of reducing both APBs and TDs simultaneously by utilising optimised GaAs growth methods in the future. Hence, a thin APB-free GaAs/Si (001) platform with a low TD density (TDD) was obtained. Based on this platform, a high-performance high-yield III-V optoelectronic device grown on CMOS-compatible Si (001) substrates with an overall thickness below the cracking threshold is feasible, enabling the mass production of Si-based photonic integrated circuits (PICs).

3.
Nat Commun ; 11(1): 977, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080180

RESUMO

Semiconductor III-V photonic crystal (PC) laser is regarded as a promising ultra-compact light source with unique advantages of ultralow energy consumption and small footprint for the next generation of Si-based on-chip optical interconnects. However, the significant material dissimilarities between III-V materials and Si are the fundamental roadblock for conventional monolithic III-V-on-silicon integration technology. Here, we demonstrate ultrasmall III-V PC membrane lasers monolithically grown on CMOS-compatible on-axis Si (001) substrates by using III-V quantum dots. The optically pumped InAs/GaAs quantum-dot PC lasers exhibit single-mode operation with an ultra-low threshold of ~0.6 µW and a large spontaneous emission coupling efficiency up to 18% under continuous-wave condition at room temperature. This work establishes a new route to form the basis of future monolithic light sources for high-density optical interconnects in future large-scale silicon electronic and photonic integrated circuits.

4.
Genome Announc ; 5(37)2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912329

RESUMO

Here, we report the genome sequence of grapevine virus K (GVK), a novel single-stranded RNA virus identified from a transcriptome of grapevine. The genome of GVK is 7,476 nucleotides in length and encodes 5 open reading frames. GVK is a putative member of the genus Vitivirus in the family Betaflexiviridae.

5.
Genome Announc ; 5(37)2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912330

RESUMO

Here, we report the genome sequence of grapevine virus T (GVT), a novel single-stranded RNA virus identified from a transcriptome of grapevine. The genome of GVT is 8,701 nucleotides in length and encodes five open reading frames. GVT is a putative member of the genus Foveavirus in the family Betaflexiviridae.

6.
ACS Appl Mater Interfaces ; 9(38): 33129-33136, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28872825

RESUMO

Polymer/metal/polymer and polymer/metal/inorganic trilayer-structured transparent electrodes with fluorocarbon plasma polymer thin film heaters have been proposed. The polymer/metal/polymer and polymer/metal/inorganic transparent conducting thin films fabricated on a large-area flexible polymer substrate using a continuous roll-to-roll sputtering process show excellent electrical properties and visible-light transmittance. They also exhibit water-repelling surfaces to prevent wetting and to remove contamination. In addition, the adoption of a fluorocarbon/metal/fluorocarbon film permits an outer bending radius as small as 3 mm. These films have a sheet resistance of less than 5 Ω sq-1, sufficient to drive light-emitting diode circuits. The thin film heater with the fluorocarbon/Ag/SiNx structure exhibits excellent heating characteristics, with a temperature reaching 180 °C under the driving voltage of 13 V. Therefore, the proposed polymer/metal/polymer and polymer/metal/inorganic transparent conducting electrodes using polymer thin films can be applied in flexible and rollable displays as well as automobile window heaters and other devices.

7.
Opt Express ; 25(15): 17556-17561, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789247

RESUMO

We employed a patterned current blocking layer (CBL) to enhance light output power of GaN-based light-emitting diodes (LEDs). Nanoimprint lithography (NIL) was used to form patterned CBLs (a diameter of 260 nm, a period of 600, and a height of 180 nm). LEDs (chip size: 300 × 800 µm2) fabricated with no CBL, a conventional SiO2 CBL, and a patterned SiO2 CBL, respectively, exhibited forward-bias voltages of 3.02, 3.1 and 3.1 V at an injection current of 20 mA. The LEDs without and with CBLs gave series resistances of 9.8 and 11.0 Ω, respectively. The LEDs with a patterned SiO2 CBL yielded 39.6 and 11.9% higher light output powers at 20 mA, respectively, than the LEDs with no CBL and conventional SiO2 CBL. On the basis of emission images and angular transmittance results, the patterned CBL-induced output enhancement is attributed to the enhanced light extraction and current spreading.

8.
Nanotechnology ; 28(4): 045205, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27991452

RESUMO

Indium tin oxide (ITO) nanodots (NDs) were combined with Ag nanowires (Ag NWs) as a p-type electrode in near ultraviolet AlGaN-based light-emitting diodes (LEDs) to increase light output power. The Ag NWs were 30 ± 5 nm in diameter and 25 ± 5 µm in length. The transmittance of 10 nm-thick ITO-only was 98% at 385 nm, while the values for ITO ND/Ag NW were 83%-88%. ITO ND/Ag NW films showed lower sheet resistances (32-51 Ω sq-1) than the ITO-only film (950 Ω sq-1). LEDs (chip size: 300 × 800 µm2) fabricated using the ITO NDs/Ag NW electrodes exhibited higher forward-bias voltages (3.52-3.75 V at 20 mA) than the LEDs with the 10 nm-thick ITO-only electrode (3.5 V). The LEDs with ITO ND/Ag NW electrodes yielded a 24%-62% higher light output power (at 20 mA) than those with the 10 nm-thick ITO-only electrode. Furthermore, finite-difference time-domain (FDTD) simulations were performed to investigate the extraction efficiency. Based on the emission images and FDTD simulations, the enhanced light output with the ITO ND/Ag NW electrodes is attributed to improved current spreading and better extraction efficiency.

9.
Opt Express ; 22 Suppl 3: A759-64, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24922383

RESUMO

The formation of thermally stable and low resistance Ti/Al-based ohmic contacts to N-polar n-GaN for high-power vertical light-emitting diodes (VLEDs) using a Ta diffusion barrier is presented. Before annealing, both Ti/Al/Au and Ti/Ta/Al/Au contacts reveal ohmic behavior with specific contact resistances of 2.4 × 10⁻4 and 1.2 × 10⁻4 Ωcm², respectively. However, unlike the Ti/Al/Au samples that are electrically degraded with increasing annealing time at 250 °C, the Ti/Ta/Al/Au samples remain thermally stable even after annealing for 600 min. LEDs fabricated with the Ti/Ta/Al/Au contacts yield 8.3% higher output power (at 300 mA) than LEDs with the Ti/Al/Au contact. X-ray photoemission spectroscopy results show that the Ta layer serves as an efficient barrier to the indiffusion of oxygen toward the GaN. On the basis of the XPS and electrical results, the annealing dependence of the electrical characteristics of Ti/Al-based contacts are described and discussed.

10.
Opt Express ; 21(22): 26774-9, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24216898

RESUMO

The enhanced light output power of a InGaN/AlGaN-based light-emitting diodes (LEDs) using three different types of highly reflective Sn-doped indium oxide (ITO)/Al-based p-type reflectors, namely, ITO/Al, Cu-doped indium oxide (CIO)/s-ITO(sputtered)/Al, and Ag nano-dots(n-Ag)/CIO/s-ITO/Al, is presented. The ITO/Al-based reflectors exhibit lower reflectance (76 - 84% at 365 nm) than Al only reflector (91.1%). However, unlike Al only n-type contact, the ITO/Al-based contacts to p-GaN show good ohmic characteristics. Near-UV (365 nm) InGaN/AlGaN-based LEDs with ITO/Al, CIO/s-ITO/Al, and n-Ag/CIO/s-ITO/Al reflectors exhibit forward-bias voltages of 3.55, 3.48, and 3.34 V at 20 mA, respectively. The LEDs with the ITO/Al and CIO/s-ITO/Al reflectors exhibit 9.5% and 13.5% higher light output power (at 20 mA), respectively, than the LEDs with the n-Ag/CIO/s-ITO/Al reflector. The improved performance of near UV LEDs is attributed to the high reflectance and low contact resistivity of the ITO/Al-based reflectors, which are better than those of conventional Al-based reflectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...