Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 17852, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30552356

RESUMO

The most important property of energy-conversion ceramics in high-power lighting devices based on laser diodes (LDs) is thermal durability because high-energy LDs act as excitation and heat sources for ceramics. Herein, aluminum-ceramic composites (ACCs) are introduced for the manipulation of heat generated during high-power lighting. The cerium-doped aluminum garnet (YAG:Ce) phosphor is selected as the energy-conversion ceramic material. The ACCs have an all-in-one structure bridged by a low-melting glass material. In ACCs, the heat flow from the ceramic to Al is manipulated by a heat-flux throttling layer (TL) comprised of Al and glass. During high-power lighting operation, the input-output temperature differences (Tin - Tout) between the ceramic layer (input heat) and end face of the Al layer (output heat) are 13 and 3.9 °C in the absence and presence of the TL, respectively. A lower Tin - Tout means less heat is loss during heat flow from the ceramic to the metal due to the temperature gradient created by inserting the TL. The results provide a potential application for multi-energy-conversion systems, i.e., optical to heat and heat to electric energy, in terms of heat flow manipulation.

2.
Sci Rep ; 6: 23064, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26972313

RESUMO

Functionally graded materials (FGMs) are compositionally gradient materials. They can achieve the controlled distribution of the desired characteristics within the same bulk material. We describe a functionally graded (FG) metal-phosphor adapting the concept of the FGM; copper (Cu) is selected as a metal and Cu- and Cl-doped ZnS (ZnS:Cu,Cl) is selected as a phosphor and FG [Cu]-[ZnS:Cu,Cl] is fabricated by a very simple powder process. The FG [Cu]-[ZnS:Cu,Cl] reveals a dual-structured functional material composed of dense Cu and porous ZnS:Cu,Cl, which is completely combined through six graded mediating layers. The photoluminescence (PL) of FG [Cu]-[ZnS:Cu,Cl] is insensitive to temperature change. FG [Cu]-[ZnS:Cu,Cl] also exhibits diode characteristics and photo reactivity for 365 nm -UV light. Our FG metal-phosphor concept can pave the way to simplified manufacturing of low-cost and can be applied to various electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...