Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; : 100981, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38816994

RESUMO

The circadian clock entrained by environmental light-dark cycles enables plants to fine-tune diurnal growth and developmental responses. Here, we show that physical interactions among evening clock components, including PSEUDO-RESPONSE REGULATOR 5 (PRR5), TIMING OF CAB EXPRESSION 1 (TOC1), and the Evening Complex (EC) component EARLY FLOWERING 3 (ELF3), define a diurnal repressive chromatin structure specifically at the PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) locus in Arabidopsis. These three clock components act interdependently as well as independently to repress nighttime hypocotyl elongation, as hypocotyl elongation rate dramatically increased specifically at nighttime in the prr5-1 toc1-21 elf3-1 mutant, concomitantly with a substantial increase in PIF4 expression. Transcriptional repression of PIF4 by ELF3, PRR5, and TOC1 is mediated by the SWI2/SNF2-RELATED (SWR1) chromatin remodeling complex, which incorporates histone H2A.Z at the PIF4 locus, facilitating robust epigenetic suppression of PIF4 during the evening. Overall, these findings demonstrate that the PRR-EC-SWR1 complex represses hypocotyl elongation at night through a distinctive chromatin domain covering PIF4 chromatin.

2.
Plant Cell Environ ; 46(5): 1442-1452, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36655421

RESUMO

Plants adapt to high temperature stresses through thermomorphogenesis, a process that includes stem elongation and hyponastic leaf growth. Thermomorphogenesis is gated by the circadian clock through two evening-expressed clock components, TIMING OF CAB EXPRESSION1 (TOC1) and PSEUDO-RESPONSE REGULATORS5 (PRR5). These proteins directly interact with and inhibit PHYTOCHROME INTERACTING FACTOR4 (PIF4), a basic helix-loop-helix transcription factor that promotes thermoresponsive growth. PIF4-mediated thermoresponsive growth is positively regulated by ZEITLUPE (ZTL), a central clock component, but the molecular mechanisms underlying this are poorly understood. Here, we show that ZTL regulates thermoresponsive growth through TOC1 and PRR5. Genetic analyses reveal that ZTL regulates PIF4 activity as well as PIF4 expression. In Arabidopsis thaliana, ztl mutants exhibit highly accumulated TOC1 and PRR5 and unresponsive expression of PIF4 target genes under exposure to high temperatures. Mutations in TOC1 and PRR5 restore thermoactivation of PIF4 target genes and thermoresponsive growth in ztl mutants. We also show that the molecular chaperone heat-shock protein 90 promotes thermoresponsive growth through the ZTL-TOC1/PRR5 signaling module. Further, we show that ZTL protein stability is increased at high temperatures. Taken together, our results demonstrate that ZTL-mediated degradation of TOC1 and PRR5 enhances the sensitivity of hypocotyl growth to high temperatures.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano/fisiologia , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Front Plant Sci ; 12: 782352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899810

RESUMO

Thermomorphogenesis is the morphological response of plants to an elevation in the ambient temperature, which is mediated by the bHLH transcription factor PIF4. The evening-expressed clock component, PRR5, directly represses the expression of PIF4 mRNA. Additionally, PRR5 interacts with PIF4 protein and represses its transactivation activity, which in turn suppresses the thermoresponsive growth in the evening. Here, we found that the B-box zinc finger protein, BBX18, interacts with PRR5 through the B-Box2 domain. Deletion of the B-Box2 domain abolished the functions of BBX18, including the stimulation of PIF4 mRNA expression and hypocotyl growth. Overexpression of BBX18, and not of B-Box2-deleted BBX18, restored the expression of thermoresponsive genes in the evening. We further show that BBX18 prevents PRR5 from inhibiting PIF4-mediated high temperature responses. Taken together, our results suggest that BBX18 regulates thermoresponsive growth through the PRR5-PIF4 pathway.

4.
Mol Plant ; 14(8): 1379-1390, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33964457

RESUMO

Membrane-localized leucine-rich repeat receptor kinases (LRR-RKs) sense diverse extracellular signals, and coordinate and specify cellular functions in plants. However, functional understanding and identification of the cellular signaling of most LRR-RKs remain a major challenge owing to their genetic redundancy, the lack of ligand information, and subtle phenotypes of LRR-RK overexpression. Here, we report an engineered rapamycin-inducible dimerization (RiD) receptor system that triggers a receptor-specific LRR-RK signaling independent of their cognate ligands or endogenous receptors. Using the RiD-receptors, we demonstrated that the rapamycin-mediated association of chimeric cytosolic kinase domains from the BRI1/BAK1 receptor/co-receptor, but not the BRI1/BRI1 or BAK1/BAK1 homodimer, is sufficient to activate downstream brassinosteroid signaling and physiological responses. Furthermore, we showed that the engineered RiD-FLS2/BAK1 could activate flagellin-22-mediated immune signaling and responses. Using the RiD system, we also identified the potential function of an unknown orphan receptor in immune signaling and revealed the differential activities of SERK co-receptors of LRR-RKs. Our results indicate that the RiD method can serve as a synthetic biology tool for precise temporal manipulation of LRR-RK signaling and for understanding LRR-RK biology.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Dimerização , Sirolimo/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ligantes , Fosforilação , Plantas Geneticamente Modificadas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
5.
Cancer Res ; 65(7): 2804-14, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15805281

RESUMO

Fenretinide (N-4-hydroxyphenyl retinamide, 4HPR) is a synthetic anticancer retinoid that is a well-known apoptosis-inducing agent. Recently, we observed that the apoptosis induced by fenretinide could be effectively enhanced in hepatoma cells by a concomitant treatment with parthenolide, which is a known inhibitor of nuclear factor-kappaB (NF-kappaB). Furthermore, treatment with fenretinide triggered the activation of NF-kappaB during apoptosis, which could be substantially inhibited by parthenolide, suggesting that NF-kappaB activation during fenretinide-induced apoptosis has an antiapoptotic effect. This study investigated the molecular mechanism of this apoptotic potentiation by NF-kappaB inhibition. The genes involved in the enhanced fenretinide-induced apoptosis by parthenolide were identified using the differential display-PCR method and subsequent Northern blot or semiquantitative reverse transcriptase PCR analysis. This study identified 35 apoptosis-related genes including 12 unknown genes that were either up- or down-regulated by parthenolide. Interestingly, one up-regulated gene (HA1A2) was isolated and cloned from the liver cDNA, and was found to be identical to ANKRD1, which is also referred to as the CARP gene. Compared with controls treated with an empty vector or with antisense cDNA, the ectopic expression of ANKRD1 led to reduced colony formation and to enhanced apoptotic cell death in hepatoma cells. These results suggest that ANKRD1 and the other genes, whose expressions were substantially modulated by the parthenolide-mediated inhibition of NF-kappaB activation, play roles in the enhanced drug-induced apoptosis. In addition, this study suggests that those identified genes may be useful in anticancer strategies against hepatoma.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinoma Hepatocelular/tratamento farmacológico , Fenretinida/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Sesquiterpenos/farmacologia , Sequência de Aminoácidos , Sequência de Bases , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Fenretinida/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Dados de Sequência Molecular , Proteínas Musculares , NF-kappa B/antagonistas & inibidores , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase/métodos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Sesquiterpenos/administração & dosagem , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...