Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biosci ; 13(1): 8, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635704

RESUMO

BACKGROUND: Temporal lobe epilepsy (TLE) remains one of the most drug-resistant focal epilepsies. Glutamate excitotoxicity and neuroinflammation which leads to loss of synaptic proteins and neuronal death appear to represent a pathogen that characterizes the neurobiology of TLE. Photobiomodulation (PBM) is a rapidly growing therapy for the attenuation of neuronal degeneration harboring non-invasiveness benefits. However, the detailed effects of PBM on excitotoxicity or neuroinflammation remain unclear. We investigated whether tPBM exerts neuroprotective effects on hippocampal neurons in epilepsy mouse model by regulating synapse and synapse-related genes. METHODS: In an in vitro study, we performed imaging analysis and western blot in primary hippocampal neurons from embryonic (E17) rat pups. In an in vivo study, RNA sequencing was performed to identify the gene regulatory by PBM. Histological stain and immunohistochemistry analyses were used to assess synaptic connections, neuroinflammation and neuronal survival. Behavioral tests were used to evaluate the effects of PBM on cognitive functions. RESULTS: PBM was upregulated synaptic connections in an in vitro. In addition, it was confirmed that transcranial PBM reduced synaptic degeneration, neuronal apoptosis, and neuroinflammation in an in vivo. These effects of PBM were supported by RNA sequencing results showing the relation of PBM with gene regulatory networks of neuronal functions. Specifically, Nlgn3 showed increase after PBM and silencing the Nlgn3 reversed the positive effect of PBM in in vitro. Lastly, behavioral alterations including hypoactivity, anxiety and impaired memory were recovered along with the reduction of seizure score in PBM-treated mice. CONCLUSIONS: Our findings demonstrate that PBM attenuates epileptic excitotoxicity, neurodegeneration and cognitive decline induced by TLE through inhibition of the Nlgn3 gene decrease induced by excitotoxicity.

2.
Sci Rep ; 12(1): 15246, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36085308

RESUMO

Status epilepticus (SE) refers to a single seizure that lasts longer than typical seizures or a series of consecutive seizures. The hippocampus, which is vulnerable to the effects of SE, has a critical role in memory storage and retrieval. The trisynaptic loop in the hippocampus connects the substructures thereof, namely the dentate gyrus (DG), CA3, and CA1. In an animal model of SE, abnormal neurogenesis in the DG and aberrant neural network formation result in sequential neural degeneration in CA3 and CA1. Photobiomodulation (PBM) therapy, previously known as low-level laser (light) therapy (LLLT), is a novel therapy for the treatment of various neurological disorders including SE. However, the effects of this novel therapeutic approach on the recovery process are poorly understood. In the present study, we found that PBM transformed SE-induced abnormal neurogenesis to normal neurogenesis. We demonstrated that PBM plays a key role in normal hippocampal neurogenesis by enhancing the migration of maturing granular cells (early neuronal cells) to the GCL, and that normal neurogenesis induced by PBM prevents SE-induced hippocampal neuronal loss in CA1. Thus, PBM is a novel approach to prevent seizure-induced neuronal degeneration, for which light devices may be developed in the future.


Assuntos
Neurogênese , Estado Epiléptico , Animais , Modelos Animais de Doenças , Hipocampo , Convulsões/radioterapia , Estado Epiléptico/radioterapia
3.
Biomed Res Int ; 2022: 4400276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252445

RESUMO

The popularity of light/energy devices for cosmetic purposes (e.g., skin care) is increasing. However, the effects and underlying mechanisms remain poorly understood. Commencing in the 1960s, various studies have evaluated the beneficial effects of a light source on cells and tissues. The techniques evaluated include low-level light (laser) therapy and photobiomodulation (PBM). Most studies on PBM used red light sources, but, recently, many studies have employed near-infrared light sources including those of wavelength 800 nm. Here, we used a light-emitting diode (LED) array with a wavelength of 863 nm to treat DMBA/TPA-induced mouse skin tumors; treatment with the array delayed tumor development and reduced the levels of systemic inflammatory cytokines. These results suggest that light therapy could be beneficial. However, the effects were small. Further studies on different skin tumors using an optimized LED setup are required. Combination therapies (conventional methods and an LED array) may be useful.


Assuntos
Terapia com Luz de Baixa Intensidade , Neoplasias Cutâneas , Animais , Citocinas , Raios Infravermelhos , Terapia com Luz de Baixa Intensidade/métodos , Camundongos , Camundongos Endogâmicos ICR , Neoplasias Cutâneas/induzido quimicamente
4.
J Microbiol Biotechnol ; 28(10): 1730-1735, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30178647

RESUMO

Bacterial pneumonia is one of the most common causes of mortality in Korea. In 2016, the mortality rate from pneumonia was 16,476 deaths per 100,000, which was an 11% increase from the previous year. The aim of our study was to determine the distribution of the bacterial pathogens causing respiratory symptoms in different age groups over a 10-year period. Between January 2008 and September 2017, 1,861 specimens from 1,664 patients admitted to Dankook University Hospital with respiratory symptoms were examined. We used multiplex polymerase chain reaction (PCR) to detect six bacterial pneumonia pathogens: Bordetella pertussis, Chlamydophila pneumoniae, Haemophilus influenzae, Legionella pneumophila, Mycoplasma pneumoniae, and Streptococcus pneumoniae. We detected bacterial pneumonia pathogens in 1,281 (68.83%) specimens. Of the 1,709 pathogens detected, S. pneumoniae was the most common (48.57%; n = 830) followed by H. influenzae (40.08%; n = 685). Most infections were found among children younger than 10 years (92.69%; n = 1,584). Although S. pneumoniae was the most common pathogen detected in all age groups, M. pneumoniae infection increased in prevalence with age (p < 0.05). The rate of co-infection was also high among these patients (31.1%; n = 399), which peaked in 2015 (54.55%; n = 42/77). The prevalence of bacterial pneumonia in Cheonan, along with the proportion of co-infections among patients increased over the 10-year study period. The findings will aid the development of treatment and prevention guidelines.


Assuntos
Pneumonia Bacteriana/epidemiologia , Pneumonia Bacteriana/microbiologia , Adolescente , Fatores Etários , Bactérias/classificação , Bactérias/genética , Criança , Pré-Escolar , Coinfecção/epidemiologia , Coinfecção/microbiologia , DNA Espaçador Ribossômico/genética , Feminino , Genes Bacterianos/genética , Hospitais Universitários , Humanos , Lactente , Masculino , Reação em Cadeia da Polimerase Multiplex , Pneumonia Bacteriana/diagnóstico , Prevalência , República da Coreia/epidemiologia , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...