Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 3369, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099694

RESUMO

Rechargeable calcium batteries have attracted increasing attention as promising multivalent ion battery systems due to the high abundance of calcium. However, the development has been hampered by the lack of suitable cathodes to accommodate the large and divalent Ca2+ ions at a high redox potential with sufficiently fast ionic conduction. Herein, we report a new intercalation host which presents 500 cycles with a capacity retention of 90% and a remarkable power capability at ~3.2 V (vs. Ca/Ca2+) in a calcium battery. The cathode material derived from Na0.5VPO4.8F0.7 is demonstrated to reversibly accommodate a large amount of Ca2+ ions, forming a series of CaxNa0.5VPO4.8F0.7 (0 < x < 0.5) phases without any noticeable structural degradation. The robust framework enables one of the smallest volume changes (1.4%) and the lowest diffusion barriers for Ca2+ among the cathodes reported to date, offering the basis for the outstanding cycle life and power capability.

2.
Front Chem ; 8: 432, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509735

RESUMO

Reversible intercalation of guest ions in graphite is the key feature utilized in modern battery technology. In particular, the capability of Li-ion insertion into graphite enabled the successful launch of commercial Li-ion batteries 30 years ago. On the road to explore graphite as a universal anode for post Li-ion batteries, the conventional intercalation chemistry is being revisited, and recent findings indicate that an alternative intercalation chemistry involving the insertion of solvated ions, designated as co-intercalation, could overcome some of the obstacles presented by the conventional intercalation of graphite. As an example, the intercalation of Na ions into graphite for Na-ion batteries has been perceived as being thermodynamically impossible; however, recent work has revealed that a large amount of Na ions can be reversibly inserted in graphite through solvated-Na-ion co-intercalation reactions. More recently, it has been extensively demonstrated that with appropriate electrolyte selection, not only Na ions but also other ions such as Li, K, Mg, and Ca ions can be co-intercalated into a graphite electrode, resulting in high capacities and power capabilities. The co-intercalation reaction shares a lot in common with the conventional intercalation chemistry but also differs in many respects, which has attracted tremendous research efforts in terms of both fundamentals and practical applications. Herein, we aim to review the progress made in understanding the solvated-ion intercalation mechanisms in graphite and to comprehensively summarize the state-of-the-art achievements by surveying the correlations among the guest ions, co-intercalation conditions, and electrochemical performance of batteries. In addition, the advantages and challenges related to the practical application of graphite undergoing co-intercalation reactions are presented.

3.
Adv Mater ; 32(4): e1904411, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31736158

RESUMO

Calcium-ion batteries (CIBs) are considered to be promising next-generation energy storage systems because of the natural abundance of calcium and the multivalent calcium ions with low redox potential close to that of lithium. However, the practical realization of high-energy and high-power CIBs is elusive owing to the lack of suitable electrodes and the sluggish diffusion of calcium ions in most intercalation hosts. Herein, it is demonstrated that calcium-ion intercalation can be remarkably fast and reversible in natural graphite, constituting the first step toward the realization of high-power calcium electrodes. It is shown that a graphite electrode exhibits an exceptionally high rate capability up to 2 A g-1 , delivering ≈75% of the specific capacity at 50 mA g-1 with full calcium intercalation in graphite corresponding to ≈97 mAh g-1 . Moreover, the capacity stably maintains over 200 cycles without notable cycle degradation. It is found that the calcium ions are intercalated into graphite galleries with a staging process. The intercalation mechanisms of the "calciated" graphite are elucidated using a suite of techniques including synchrotron in situ X-ray diffraction, nuclear magnetic resonance, and first-principles calculations. The versatile intercalation chemistry of graphite observed here is expected to spur the development of high-power CIBs.

4.
Chem Rev ; 120(14): 6684-6737, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31793294

RESUMO

The electrochemical properties and performances of lithium-ion batteries are primarily governed by their constituent electrode materials, whose intrinsic thermodynamic and kinetic properties are understood as the determining factor. As a part of complementing the intrinsic material properties, the strategy of nanosizing has been widely applied to electrodes to improve battery performance. It has been revealed that this not only improves the kinetics of the electrode materials but is also capable of regulating their thermodynamic properties, taking advantage of nanoscale phenomena regarding the changes in redox potential, solid-state solubility of the intercalation compounds, and reaction paths. In addition, the nanosizing of materials has recently enabled the discovery of new energy storage mechanisms, through which unexplored classes of electrodes could be introduced. Herein, we review the nanoscale phenomena discovered or exploited in lithium-ion battery chemistry thus far and discuss their potential implications, providing opportunities to further unveil uncharted electrode materials and chemistries. Finally, we discuss the limitations of the nanoscale phenomena presently employed in battery applications and suggest strategies to overcome these limitations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...