Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Monit Comput ; 38(4): 791-802, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38436898

RESUMO

PURPOSE: Continuous cerebrovascular reactivity monitoring in both neurocritical and intra-operative care has gained extensive interest in recent years, as it has documented associations with long-term outcomes (in neurocritical care populations) and cognitive outcomes (in operative cohorts). This has sparked further interest into the exploration and evaluation of methods to achieve an optimal cerebrovascular reactivity measure, where the individual patient is exposed to the lowest insult burden of impaired cerebrovascular reactivity. Recent literature has documented, in neural injury populations, the presence of a potential optimal sedation level in neurocritical care, based on the relationship between cerebrovascular reactivity and quantitative depth of sedation (using bispectral index (BIS)) - termed BISopt. The presence of this measure outside of neural injury patients has yet to be proven. METHODS: We explore the relationship between BIS and continuous cerebrovascular reactivity in two cohorts: (A) healthy population undergoing elective spinal surgery under general anesthesia, and (B) healthy volunteer cohort of awake controls. RESULTS: We demonstrate the presence of BISopt in the general anesthesia population (96% of patients), and its absence in awake controls, providing preliminary validation of its existence outside of neural injury populations. Furthermore, we found BIS to be sufficiently separate from overall systemic blood pressure, this indicates that they impact different pathophysiological phenomena to mediate cerebrovascular reactivity. CONCLUSIONS: Findings here carry implications for the adaptation of the individualized physiologic BISopt concept to non-neural injury populations, both within critical care and the operative theater. However, this work is currently exploratory, and future work is required.


Assuntos
Anestesia Geral , Monitores de Consciência , Eletroencefalografia , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Eletroencefalografia/métodos , Circulação Cerebrovascular , Voluntários Saudáveis , Pressão Sanguínea , Monitorização Intraoperatória/métodos , Idoso , Vigília , Reprodutibilidade dos Testes , Cuidados Críticos/métodos , Adulto Jovem
2.
Front Physiol ; 14: 1204874, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351255

RESUMO

Background: Burst suppression (BS) is an electroencephalography (EEG) pattern in which there are isoelectric periods interspersed with bursts of cortical activity. Targeting BS through anaesthetic administration is used as a tool in the neuro-intensive care unit but its relationship with cerebral blood flow (CBF) and cerebral autoregulation (CA) is unclear. We performed a systematic scoping review investigating the effect of BS on CBF and CA in animals and humans. Methods: We searched MEDLINE, BIOSIS, EMBASE, SCOPUS and Cochrane library from inception to August 2022. The data that were collected included study population, methods to induce and measure BS, and the effect on CBF and CA. Results: Overall, there were 66 studies that were included in the final results, 41 of which examined animals, 24 of which examined humans, and 1 of which examined both. In almost all the studies, BS was induced using an anaesthetic. In most of the animal and human studies, BS was associated with a decrease in CBF and cerebral metabolism, even if the mean arterial pressure remained constant. The effect on CA during periods of stress (hypercapnia, hypothermia, etc.) was variable. Discussion: BS is associated with a reduction in cerebral metabolic demand and CBF, which may explain its usefulness in patients with brain injury. More evidence is needed to elucidate the connection between BS and CA.

3.
Neurotrauma Rep ; 4(1): 307-317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187506

RESUMO

Within traumatic brain injury (TBI) care, there is growing interest in pathophysiological markers as surrogates of disease severity, which may be used to improve and individualize care. Of these, assessment of cerebrovascular reactivity (CVR) has been extensively studied given that it is a consistent, independent factor associated with mortality and functional outcome. However, to date, the literature supports little-to-no impact of current guideline-supported therapeutic interventions on continuously measured CVR. Previous work in this area has suffered from a lack of validation studies, given the rarity of time-matched high-frequency cerebral physiology with serially recorded therapeutic interventions; thus, we undertook a validation study. Utilizing the Winnipeg Acute TBI database, we evaluated the association between daily treatment intensity levels, as measured through the therapeutic intensity level (TIL) scoring system, and continuous multi-modal-derived CVR measures. CVR measures included the intracranial pressure (ICP)-derived pressure reactivity index, pulse amplitude index, and RAC index (a correlation between the pulse amplitude of ICP and cerebral perfusion pressure), as well as the cerebral autoregulation measure of near-infrared spectroscopy-based cerebral oximetry index. These measures were also derived over a key threshold for each day and were compared to the daily total TIL measure. In summary, we could not observe any overall relationship between TIL and these CVR measures. This validates previous findings and represents only the second such analysis to date. This helps to confirm that CVR appears to remain independent of current therapeutic interventions and is a potential unique physiological target for critical care. Further work into the high-frequency relationship between critical care and CVR is required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA