Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 129(19): 194112, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-19026050

RESUMO

Quantum trajectory methods (QTMs) hold great promise as a potential means of obtaining dynamical insight and computational scaling similar to classical trajectory simulations but in an exact quantum dynamical context. To date, the development of QTMs has been stymied by the "node problem"--highly nonclassical and numerically unstable trajectories that arise when the wavepacket density |psi|2 exhibits substantial interference oscillations. In a recent paper, however [B. Poirier, J. Chem. Phys. 128, 164115 (2008)], a "bipolar decomposition," psi=psi+(+)(psi)psi(-), was introduced for one-dimensional (1D) wavepacket dynamics calculations such that the component densities |psi(+)(-)|2 are slowly varying and otherwise interference-free, even when |psi|2 itself is highly oscillatory. The bipolar approach is thus ideally suited to a QTM implementation, as is demonstrated explicitly in this paper. Two model 1D benchmark systems exhibiting substantial interference are considered--one with more "quantum" system parameters and the other more classical-like. For the latter, more challenging application, synthetic QTM results are obtained and found to be extremely accurate, as compared to a corresponding fixed-grid calculation. Ramifications of the bipolar QTM approach for the classical limit and also for multidimensional applications, are discussed.

2.
J Chem Phys ; 127(22): 224101, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-18081384

RESUMO

The spin-modification probability (SMP) method, which provides fundamental and detailed quantitative information on the nuclear spin selection rules, is discussed more systematically and generalized for reactive collision systems involving more than one configuration of reactant and product molecules, explicitly taking account of the conservation of the overall nuclear spin symmetry as well as the conservation of the total nuclear spin angular momentum, under the assumption of no nuclear hyperfine interaction. The values of SMP once calculated can be used for any system of identical nuclei of any spin as long as the system has the corresponding nuclear spin symmetry. The values of SMP calculated for simple systems can also be used for more complex systems containing several kinds of identical nuclei or various isotopomers. The generalized formulation of statistical scattering theory which can easily represent various rearrangement mechanisms is also presented.

3.
J Chem Phys ; 126(4): 044305, 2007 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-17286468

RESUMO

The ortho-para conversion of H(3) (+) and H(2) in the reaction H(3) (+)+H(2)-->(H(5) (+))(*)-->H(3) (+)+H(2) in interstellar space is possible by scrambling the five protons via (H(5) (+))(*) complex formation. The product distribution of the ortho-para conversion reaction can be given by ratios of cumulative reaction probabilities (CRP) calculated by microcanonical statistical theory with conservation of energy, motional angular momentum, nuclear spin, and parity. A statistical method to calculate the state-to-state reaction probabilities for given initial nuclear spin species, rotational states, and collision energies is developed using a simple semiclassical approximation of tunneling and above-barrier reflection. A new calculation method of branching ratios for given total nuclear spins and scrambling mechanisms is also developed. The anisotropic long-range electrostatic interaction potential of H(2) in the Coulomb field of H(3) (+) is taken into account using the first-order perturbation theory in forming the complex. The CRPs and the product distribution of the ortho-para conversion reaction at very low energies with reactants in their ground vibronic and lowest rotational states for given initial nuclear spin species are presented as a function of collision energy assuming complete proton scrambling or incomplete proton scrambling. The authors show that the product distribution at very low energies (or very low temperatures) differs substantially from the high energy (or high temperature) limit branching ratios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA