Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(2): e2307523, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972308

RESUMO

The development of organic-based optoelectronic technologies for the indoor Internet of Things market, which relies on ambient energy sources, has increased, with organic photovoltaics (OPVs) and photodetectors (OPDs) considered promising candidates for sustainable indoor electronic devices. However, the manufacturing processes of standalone OPVs and OPDs can be complex and costly, resulting in high production costs and limited scalability, thus limiting their use in a wide range of indoor applications. This study uses a multi-component photoactive structure to develop a self-powering dual-functional sensory device with effective energy harvesting and sensing capabilities. The optimized device demonstrates improved free-charge generation yield by quantifying charge carrier dynamics, with a high output power density of over 81 and 76 µW cm-2 for rigid and flexible OPVs under indoor conditions (LED 1000 lx (5200 K)). Furthermore, a single-pixel image sensor is demonstrated as a feasible prototype for practical indoor operating in commercial settings by leveraging the excellent OPD performance with a linear dynamic range of over 130 dB in photovoltaic mode (no external bias). This apparatus with high-performance OPV-OPD characteristics provides a roadmap for further exploration of the potential, which can lead to synergistic effects for practical multifunctional applications in the real world by their mutual relevance.

2.
Nat Mater ; 22(12): 1470-1477, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38012388

RESUMO

Three-dimensional (3D) hetero-integration technology is poised to revolutionize the field of electronics by stacking functional layers vertically, thereby creating novel 3D circuity architectures with high integration density and unparalleled multifunctionality. However, the conventional 3D integration technique involves complex wafer processing and intricate interlayer wiring. Here we demonstrate monolithic 3D integration of two-dimensional, material-based artificial intelligence (AI)-processing hardware with ultimate integrability and multifunctionality. A total of six layers of transistor and memristor arrays were vertically integrated into a 3D nanosystem to perform AI tasks, by peeling and stacking of AI processing layers made from bottom-up synthesized two-dimensional materials. This fully monolithic-3D-integrated AI system substantially reduces processing time, voltage drops, latency and footprint due to its densely packed AI processing layers with dense interlayer connectivity. The successful demonstration of this monolithic-3D-integrated AI system will not only provide a material-level solution for hetero-integration of electronics, but also pave the way for unprecedented multifunctional computing hardware with ultimate parallelism.

3.
Am J Trop Med Hyg ; 109(5): 1122-1128, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783453

RESUMO

There is a need for next-generation cholera vaccines that provide high-level and durable protection in young children in cholera-endemic areas. A cholera conjugate vaccine (CCV) is in development to address this need. This vaccine contains the O-specific polysaccharide (OSP) of Vibrio cholerae O1 conjugated via squaric acid chemistry to a recombinant fragment of the tetanus toxin heavy chain (OSP:rTTHc). This vaccine has been shown previously to be immunogenic and protective in mice and found to be safe in a recent preclinical toxicological analysis in rabbits. We took advantage of excess serum samples collected as part of the toxicological study and assessed the immunogenicity of CCV OSP:rTTHc in rabbits. We found that vaccination with CCV induced OSP-, lipopolysaccharide (LPS)-, and rTTHc-specific immune responses in rabbits, that immune responses were functional as assessed by vibriocidal activity, and that immune responses were protective against death in an established virulent challenge assay. CCV OSP:rTTHc immunogenicity in two animal model systems (mice and rabbits) is encouraging and supports further development of this vaccine for evaluation in humans.


Assuntos
Vacinas contra Cólera , Cólera , Vibrio cholerae O1 , Criança , Coelhos , Humanos , Animais , Camundongos , Pré-Escolar , Cólera/prevenção & controle , Antígenos O , Toxina Tetânica , Vacinas Conjugadas , Imunoglobulina M , Vacinação , Formação de Anticorpos , Modelos Animais de Doenças , Anticorpos Antibacterianos , Toxina da Cólera
4.
ACS Nano ; 17(6): 5821-5833, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36881690

RESUMO

In this study, a fibriform electrochemical diode capable of performing rectifying, complementary logic and device protection functions for future e-textile circuit systems is fabricated. The diode was fabricated using a simple twisted assembly of metal/polymer semiconductor/ion gel coaxial microfibers and conducting microfiber electrodes. The fibriform diode exhibited a prominent asymmetrical current flow with a rectification ratio of over 102, and its performance was retained after repeated bending deformations and washings. Fundamental studies on the electrochemical interactions of polymer semiconductors with ions reveal that the Faradaic current generated in polymer semiconductors by electrochemical reactions results in an abrupt current increase under a forward bias, in which the threshold voltages of the device are determined by the oxidation or reduction potential of the polymer semiconductor. Textile-embedded full-wave rectifiers and logic gate circuits were implemented by simply integrating the fibriform diodes, exhibiting AC-to-DC signal conversion and logic operation functions, respectively. It was also confirmed that the proposed fibriform diode can suppress transient voltages and thus protect a low-voltage operational wearable e-textile circuit.

5.
Opt Lett ; 48(2): 347-350, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638454

RESUMO

A photoelectrochemical (PEC) cell produces hydrogen energy using solar energy and an electrochemical reaction. In the hydrogen production process with water decomposition, electrons move from the anode to the cathode, and by measuring the current value at this time, the PEC cell can generate hydrogen and function as an image sensor at the same time. Due to the characteristics of the PEC cell that can perform both functions simultaneously, it can be applied as a device that can detect and respond to the surrounding environment without the need for an observation system such as a camera. We present the imaging performance of PEC cells. The effectiveness of the experiment was confirmed by applying the PEC cells to integral imaging, one of the three-dimensional (3D) imaging techniques.


Assuntos
Técnicas Eletroquímicas , Energia Solar , Técnicas Eletroquímicas/métodos , Imageamento Tridimensional , Hidrogênio/química
6.
Ann Clin Lab Sci ; 52(4): 663-676, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36197768

RESUMO

OBJECTIVE: Vascular endothelial growth factor (VEGF) and other cytokines have been reported to be implicated in the molecular pathogenesis of hematologic malignancy. However, a quantitative measurement of VEGF and related cytokines is necessary to reflect the real situation in the bone marrow (BM). Currently, no such quantitative assays exist for use in the BM supernatant as their concentrations have not been previously validated in the BM. Here we performed linearity and recovery tests to quantitatively measure the concentrations of VEGF and six related cytokines in the BM. METHOD: A total of 24 BM supernatant samples were collected from patients who underwent a BM examination for hematological malignancies. The levels of VEGF and six cytokines - granulocyte colony-stimulating factor (G-CSF), interferon-ß (INF-ß), interleukin (IL)-1ß, IL-6, IL-17A, and tumor necrosis factor-α (TNF-α) - were measured using Luminex assay and enzyme-linked immunosorbent assay. Percentage recovery and linearity were calculated, with the acceptable range being 80-120%. The undiluted and diluted (1:2, 1:4, and 1:8) concentrations of VEGF and the six cytokines in 24 spiked and unspiked BM supernatant samples and controls were also measured. RESULTS: For VEGF, both assays passed the percentage recovery and linearity tests; wherein the undiluted and all diluted concentrations of VEGF in all six unspiked BM samples showed linearity parallel to those of VEGF in spiked BM samples and controls. For the other six cytokines, both assays did not pass the percentage recovery and linearity tests, with the undiluted and diluted concentrations in all seventeen unspiked BM samples (except G-CSF in one sample) showing a lack of parallelism to those in spiked BM samples and controls. CONCLUSIONS: Quantitative VEGF measurement in real BM specimens was validated using both Luminex assay and ELISA. All six cytokines, except for VEGF, whether undiluted or diluted, could not be accurately measured in the BM supernatants, indicating the presence of inhibitors to the analytes. Quantitative measurement of VEGF-related cytokines in the BM will have to be validated in further studies with more samples.


Assuntos
Citocinas , Neoplasias Hematológicas , Medula Óssea/patologia , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Fator Estimulador de Colônias de Granulócitos/metabolismo , Neoplasias Hematológicas/patologia , Humanos , Interferon beta/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Medições Luminescentes , Projetos Piloto , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
Science ; 377(6608): 859-864, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35981034

RESUMO

Recent advances in flexible and stretchable electronics have led to a surge of electronic skin (e-skin)-based health monitoring platforms. Conventional wireless e-skins rely on rigid integrated circuit chips that compromise the overall flexibility and consume considerable power. Chip-less wireless e-skins based on inductor-capacitor resonators are limited to mechanical sensors with low sensitivities. We report a chip-less wireless e-skin based on surface acoustic wave sensors made of freestanding ultrathin single-crystalline piezoelectric gallium nitride membranes. Surface acoustic wave-based e-skin offers highly sensitive, low-power, and long-term sensing of strain, ultraviolet light, and ion concentrations in sweat. We demonstrate weeklong monitoring of pulse. These results present routes to inexpensive and versatile low-power, high-sensitivity platforms for wireless health monitoring devices.


Assuntos
Monitorização Fisiológica , Tecnologia de Sensoriamento Remoto , Dispositivos Eletrônicos Vestíveis , Humanos , Monitorização Fisiológica/instrumentação , Pulso Arterial , Tecnologia de Sensoriamento Remoto/instrumentação , Semicondutores , Suor/química
8.
Opt Lett ; 47(4): 866-869, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35167545

RESUMO

We report the performance of a MoS2 Schottky diode on three-dimensional (3D) integral imaging. The MoS2 Schottky diode has asymmetric Pt electrodes for the Schottky contact and Ti/Au electrodes for the ohmic contact. Such a Schottky diode exhibits an excellent rectification ratio of 103, a broad spectral photoresponse in the 450-700 nm range, an almost ideal linearity of 1, and a wide linear dynamic range of 106 dB. We successfully conduct object pickup experiments using integral imaging and validate the feasibility of a single-pixel imager as a 3D image sensor.

9.
ACS Nano ; 15(11): 17917-17925, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34677045

RESUMO

Polarization-sensitive photodetection has attracted considerable attention as an emerging technology for future optoelectronic applications such as three-dimensional (3D) imaging, quantum optics, and encryption. However, traditional photodetectors based on Si or III-V InGaAs semiconductors cannot directly detect polarized light without additional optical components. Herein, we demonstrate a self-powered linear-polarization-sensitive near-infrared (NIR) photodetector using a two-dimensional WSe2/ReSe2 van der Waals heterostructure. The WSe2/ReSe2 heterojunction photodiode with semivertical geometry exhibits excellent performance: an ideality factor of 1.67, a broad spectral photoresponse of 405-980 nm with a significant photovoltaic effect, outstanding linearity with a linear dynamic range wider than 100 dB, and rapid photoswitching behavior with a cutoff frequency up to 100 kHz. Strongly polarized excitonic transitions around the band edge in ReSe2 lead to significant 980 nm NIR linear-polarization-dependent photocurrent. This linear polarization sensitivity remains stable even after exposure to air for longer than five months. Furthermore, by leveraging the NIR (980 nm)-selective linear polarization detection of this photodiode under photovoltaic operation, we demonstrate digital incoherent holographic 3D imaging.

10.
Vaccine ; 39(47): 6936-6946, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34716040

RESUMO

There is a need to develop cholera vaccines that are protective in young children under 5 years of age, which induce long-term immunity, and which can be incorporated into the Expanded Programme of Immunization (EPI) in cholera-endemic countries. The degree of protection afforded by currently available oral cholera vaccines (OCV) to young children is significantly lower than that induced by vaccination of older vaccine recipients. Immune responses that protect against cholera target the O-specific polysaccharide (OSP) of Vibrio cholerae, and young children have poor immunological responses to bacterial polysaccharides, which are T cell independent antigens. To overcome this, we have developed a cholera conjugate vaccine (CCV) containing the OSP of V. cholerae O1, the main cause of endemic and epidemic cholera. Here, we describe production of CCV through a scalable manufacturing process and preclinical evaluation of immunogenicity in the presence and absence of aluminum phosphate (alum) as an adjuvant. The vaccine displays V. cholerae O1 Inaba OSP in sun-burst display via single point attachment of core oligosaccharide to a recombinant tetanus toxoid heavy chain fragment (rTTHc). Two different pilot-scale production batches of non-GMP CCV were manufactured and characterized in terms of physico-chemical properties and immunogenicity. In preclinical testing, the vaccine induced OSP- and lipopolysaccharide (LPS)-specific IgG and IgM responses, vibriocidal responses, memory B cell responses, and protection in a V. cholerae O1 challenge model. The addition of alum to the administered vaccine increased OSP-specific immune responses. These results support evaluation of CCV in humans.


Assuntos
Vacinas contra Cólera , Cólera , Vibrio cholerae O1 , Administração Oral , Anticorpos Antibacterianos , Pré-Escolar , Cólera/prevenção & controle , Humanos , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M , Células B de Memória , Vacinas Conjugadas
11.
Int J Med Sci ; 18(14): 3290-3298, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34400898

RESUMO

Background: Recently, various associations of NGAL with several hematological cancers have been reported. However, given that the regulation of NGAL gene expression by cytokines is tissue-specific, NGAL expression in relation to those of cytokine genes has not been analyzed in bone marrow (BM) tissue. The purpose of this study was to analyze the association between NGAL and 48 cytokine gene expression levels in mononuclear cells (MNCs) of BM at the time of diagnosis of hematological malignancy and to explore the expression pattern of NGAL and related cytokine genes in patients with hematological malignancies and controls. Methods: BM MNCs were isolated from 48 patients, who were classified as patients presenting myeloproliferative neoplasm, acute myeloid leukemia, myelodysplastic syndrome, and as controls. NGAL and cytokine genes were analyzed using NanoString. Data on hematological parameters were collected from medical records. Single and multiple regression analyses were performed to analyze relationships. Results: Normalized counts of 26 cytokine genes were related to NGAL normalized counts, while STAT3 and TLR4 normalized counts had the highest explanatory power. The following multiple regression model was developed: NGAL normalized counts=4316.825 + 9.056 × STAT3 normalized counts + 844.226 × IL5 normalized counts + 17.540 × TLR1 normalized counts - 28.206 × TLR2 normalized counts - 42.524 × IRAK4 normalized counts. In the multiple regression analysis, STAT3 and TLR4 normalized counts showed multicollinearity. NGAL, STAT3, IL5, and TLR4 normalized counts showed similar intergroup patterns. Conclusions: NGAL normalized counts was predicted by a multiple regression model, while they showed similar intergroup patterns to STAT3, IL5, and TLR4 normalized counts.


Assuntos
Medula Óssea/patologia , Citocinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hematológicas/genética , Lipocalina-2/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Citocinas/análise , Feminino , Neoplasias Hematológicas/patologia , Humanos , Lipocalina-2/análise , Masculino , Pessoa de Meia-Idade
12.
Sci Adv ; 7(27)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34193431

RESUMO

Electronic skins (e-skins)-electronic sensors mechanically compliant to human skin-have long been developed as an ideal electronic platform for noninvasive human health monitoring. For reliable physical health monitoring, the interface between the e-skin and human skin must be conformal and intact consistently. However, conventional e-skins cannot perfectly permeate sweat in normal day-to-day activities, resulting in degradation of the intimate interface over time and impeding stable physical sensing. Here, we present a sweat pore-inspired perforated e-skin that can effectively suppress sweat accumulation and allow inorganic sensors to obtain physical health information without malfunctioning. The auxetic dumbbell through-hole patterns in perforated e-skins lead to synergistic effects on physical properties including mechanical reliability, conformability, areal mass density, and adhesion to the skin. The perforated e-skin allows one to laminate onto the skin with consistent homeostasis, enabling multiple inorganic sensors on the skin to reliably monitor the wearer's health over a period of weeks.

13.
Nanotechnology ; 32(14): 145401, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33348328

RESUMO

Coaxial type piezoelectric energy generator (C-PEG) nanofiber was fabricated by a self-designed continuous electrospinning deposition system. Piezoelectric PVDF-TrFE nanofiber as an electroactive material was electrospun at a discharge voltage of 9-12 kV onto a simultaneously rotating and transverse moving Cu metal wire at an angular velocity of ω g = 60-120 RPM. The piezoelectric coefficient d33 of the PVDF-TrFE nanofiber was approximately -20 pm V-1. The generated output voltage (V G) increased according to the relationship exp(-α P) (α = 0.41- 0.57) as the pressure (P) increased from 30 to 500 kpa. The V G values for ten and twenty pieces of C-PEG were V G = 3.9 V and 9.5 V at P = 100 kpa, respectively, relatively high output voltages compared to previously reported values. The high V G for the C-PEG stems from the fact that it can generate a fairly high V G due to the increased number of voltage collection points compared to a conventional two-dimensional (2-dim) capacitor type of piezoelectric film or fiber device. C-PEG yarn was also fabricated via the dip-coating of a PDMS polymer solution, followed by winding with Ag-coated nylon fiber as an outer electrode. The current and power density of ten pieces of C-PEG yarn were correspondingly 22 nA cm-2 and 8.6 µW cm-3 at V G = 1.97 V, higher than previously reported values of 5.54 and 6 µW cm-3. The C-PEG yarn, which can generate high voltage compared to the conventional film/nanofiber mat type, is expected to be very useful as a wearable energy generator system.

14.
ACS Nano ; 14(12): 17213-17223, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33295757

RESUMO

Fiber optoelectronics technology has recently attracted attention as enabling various form factors of wearable electronics, and the issue of how to control and optimize the configuration and physical properties of the electrode micropatterns in the microfiber devices has become important. Here, spirally wrapped carbon nanotube (CNT) microelectrodes with a controlled dimension are demonstrated for high-performance fiber optoelectronic devices. Inkjet-printed CNT microelectrodes with the desired dimension on an agarose hydrogel template are rolling-transferred onto a microfiber surface with an efficient electrical interface. A fiber organic field-effect transistor with spirally wrapped CNT microelectrodes verifies the feasibility of this strategy, where the transferred microelectrodes intimately contact the organic semiconductor active layer and the output current characteristics are simply controlled, resulting in characteristics that exceed the previous structural limitations. Furthermore, a fiber organic photodiode with spirally wrapped CNT microelectrodes, when used as a transparent electrode, exhibits a high Ilight/Idark ratio and good durability of bending. This fiber photodiode can be successfully incorporated into a textile photoplethysmography bandage for the real-time monitoring of human vital signals. This work offers a promising and efficient strategy to overcome the geometric factors limiting the performance of fiber-optic optoelectronic devices.

15.
Opt Lett ; 45(16): 4531-4534, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32797001

RESUMO

Two-dimensional (2D) layered van der Waals atomic crystals exhibit many fascinating properties. In particular, their dangling-bond-free nature enables different 2D materials to be stacked on the top of each other without restraint, thereby forming a heterostructure. In this study, a high-performance all 2D WSe2/MoS2 heterojunction photodiode with a graphene contact as an electrode is demonstrated. It exhibits an excellent electrical performance (ideality factor of 1.2 and rectification ratio of 104), a broad spectral photoresponse (from 450 to 980 nm), and a remarkable linearity with a linear dynamic range of 113 dB. Finally, a self-powered single pixel imager is demonstrated as a feasible optoelectronic application.

16.
Artigo em Inglês | MEDLINE | ID: mdl-32117921

RESUMO

Streptococcus pneumoniae is the causative agent of many diseases, most notably pneumonia. Most of the currently used vaccines to protect against this pathogen employ pneumococcal capsular polysaccharides (CPSs) as antigens, but purifying CPS of sufficient quality has been challenging. A purification process for CPS comprising conventional methods such as ultrafiltration, CTAB precipitation, and chromatography was previously established; however, this method resulted in high cell wall polysaccharide (CWPS) contamination, especially for serotype 5. Thus, a better purification method that yields CPS of a higher quality is needed for vaccine development. In this study, we significantly reduced CWPS contamination in serotype 5 CPS by improving the ultrafiltration and CTAB precipitation steps. Moreover, by applying an acid precipitation process to further remove other impurities, serotype 5 CPS was obtained with a lower impurity such as decreased nucleic acid contamination. This improved method was also successfully applied to 14 other serotypes (1, 3, 4, 6A, 6B, 7F, 9V, 11A, 14, 18C, 19A, 19F, 22F, and 23F). To assess the immunogenicity of the CPS from the 15 serotypes, two sets of 15-valent pneumococcal conjugate vaccines were prepared using the previous purification method and the improved method developed here; these vaccines were administered to a rabbit model. Enzyme-linked immunosorbent assay and opsonophagocytic assay demonstrated higher immunogenicity of the conjugate vaccine prepared using CPS produced by the improved purification process.

17.
ACS Appl Mater Interfaces ; 12(9): 10858-10866, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32037787

RESUMO

Two-dimensional (2D) van der Waals (vdW) heterostructures herald new opportunities for conducting fundamental studies of new physical/chemical phenomena and developing diverse nanodevice applications. In particular, vdW heterojunction p-n diodes exhibit great potential as high-performance photodetectors, which play a key role in many optoelectronic applications. Here, we report on 2D MoTe2/MoS2 multilayer semivertical vdW heterojunction p-n diodes and their optoelectronic application in self-powered visible-invisible multiband detection and imaging. Our MoTe2/MoS2 p-n diode exhibits an excellent electrical performance with an ideality factor of less than 1.5 and a high rectification (ON/OFF) ratio of more than 104. In addition, the photodiode exhibits broad spectral photodetection capability over the range from violet (405 nm) to near-infrared (1310 nm) wavelengths and a remarkable linear dynamic range of 130 dB within an optical power density range of 10-5 to 1 W/cm2 in the photovoltaic mode. Together with these favorable static photoresponses and electrical behaviors, very fast photo- and electrical switching behaviors are clearly observed with negligible changes at modulation frequencies greater than 100 kHz. In particular, inspired by the photoswitching results for periodic red (638 nm) and near-infrared (1310 nm) illumination at 100 kHz, we successfully demonstrate a prototype self-powered visible-invisible multiband image sensor based on the MoTe2/MoS2 p-n photodiode as a pixel. Our findings can pave the way for more advanced developments in optoelectronic systems based on 2D vdW heterostructures.

18.
Appl Opt ; 58(22): 5883-5891, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503934

RESUMO

We propose a method to improve the axial response of structured illumination microscopy via selection of an illumination pattern with a sinusoidal or square wave within the cutoff frequency of the imaging system. Residual modulation within a sectioned image is mitigated by accurate phase-shifting via the electrical spatial light modulator control signal, which is based on an illumination pattern having a suitable waveform. Reduction in residual modulation is observed in the sinusoidal pattern with a spatial frequency sufficiently below the cutoff frequency of the imaging system. This reduction is larger for the square wave as the spatial frequency approaches one-third of the cutoff frequency.

19.
Sci Rep ; 9(1): 12875, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492924

RESUMO

Short-wave infrared (SWIR) detectors and emitters have a high potential value in several fields of applications, including the internet of things (IoT) and advanced driver assistance systems (ADAS), gas sensing. Indium Gallium Arsenide (InGaAs) photodetectors are widely used in the SWIR region of 1-3 µm; however, they only capture a part of the region due to a cut-off wavelength of 1.7 µm. This study presents an InAs p-i-n photodetector grown on a GaAs substrate (001) by inserting 730-nm thick InxAl1-xAs graded and AlAs buffer layers between the InAs layer and the GaAs substrate. At room temperature, the fabricated InAs photodetector operated in an infrared range of approximately 1.5-4 µm and its detectivity (D*) was 1.65 × 108 cm · Hz1/2 · W-1 at 3.3 µm. To demonstrate performance, the Sherlock Holmes mapping images were obtained using the photodetector at room temperature.

20.
Adv Mater ; 31(23): e1900564, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30977567

RESUMO

Herein, a unique device architecture is proposed for fibrous organic transistors based on a double-stranded assembly of electrode microfibers for electronic textile applications. A key feature of this work is that the semiconductor channel of the fiber transistor comprises a twist assembly of the source and drain electrode microfibers that are coated by an organic semiconductor. This architecture not only allows the channel dimension of the device to be readily controlled by varying the thickness of the semiconductor layer and the twisted length of the two electrode microfibers, but also passivates the device without affecting interconnections with other electrical components. It is found that the control of crystalline nanostructure of the semiconductor layer is critical for improving both the production yield of the device and the charge-carrier transport in the device. The resulting fibrous organic transistors show a high output current of over -5 mA at a low operation voltage of -1.3 V and a good on/off current ratio of 105 . The device performance is maintained after repeated bending deformation and washing with a strong detergent solution. Application of the fibrous organic transistors to switch current-driven LED devices and detection of electrocardiography signals from a human body are demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...