Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 36(30): 8745-8752, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32633126

RESUMO

Flexible and metal-economical electromagnetic interference (EMI) shielding films were fabricated based on microporous organic polymer (MOP) chemistry. MOP with amino groups (MOP-A) could be introduced to the surface of poly(ethylene terephthalate) (PET) fibers. Due to the microporosity and amino groups of MOP-A, Ag+ could be easily incorporated into PET@MOP-A. Through Ag-catalyzed electroless Cu deposition, PET@MOP-A@Cu films were fabricated. The morphological and chemical structures of the PET@MOP-A@Cu were characterized by scanning electron microscopy, X-ray diffraction studies, and X-ray photoelectron spectroscopy. Among the films, the PET@MOP-A@Cu-40 with 41 wt % Cu (a thickness of 0.64 µm) showed excellent EMI shielding performance with 64.3-73.8 dB against an EM of 8-12 GHz. Moreover, it showed retention of the original EMI shielding performance against 1000 bending (R = 5 mm) tests.

2.
J Hazard Mater ; 248-249: 211-8, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23376490

RESUMO

Glutaraldehyde (GA)-crosslinked chitosan beads (GA-CS) are prepared with coagulating solution containing sodium tripolyphosphate and GA, and used for the adsorption of metals from binary-metal solution Au(III) and Pd(II). GA-CS exhibited selective sorption of Au(III) in the Au(III)-Pd(II) mixture. X-ray diffraction analyses showed that Au(III) was reduced to Au(0) following sorption, while Pd(II) was present as unreduced divalent form. Increased GA led to more selectivity toward Au(III), indicating that Au(III) selectivity is attributed to reduction-couple sorption of Au(III) with a reducing agent GA. Furthermore, a 2-step desorption process enabled selective recovery of Pd and Au using 5M HCl and 0.5M thiourea-1M HCl, respectively, leading to pure Pd(II) and Au(III)-enriched solutions. This finding may open a new way to design reduction-coupled selectivity-tunable metal sorbents by combination of redox potentials of metal ions and reducing agents.


Assuntos
Quitosana/química , Glutaral/química , Ouro/química , Paládio/química , Adsorção , Conservação dos Recursos Naturais , Oxirredução , Reciclagem/métodos
3.
Bioresour Technol ; 104: 208-14, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22138591

RESUMO

This study introduces a new process for the recovery of gold in porous fiber form by the incineration of Au-loaded biosorbent fiber from gold-cyanide solutions. For the recovery of gold from such aqueous solutions, polyethylenimine (PEI)-modified bacterial biosorbent fiber (PBBF) and PEI-modified chitosan fiber (PCSF) were developed and used. The maximum uptakes of Au(I) ions were estimated as 421.1 and 251.7 mg/g at pH 5.5 for PBBF and PCSF, respectively. Au-loaded biosorbents were freeze-dried and then incinerated to oxidize their organic constituents while simultaneously obtaining reduced gold. As a result, porous metallic gold fibers were obtained with 60 µm of diameter. Scanning electron microscopic (SEM) analysis and mercury porosimetry revealed the fibers to have 60 µm of diameter and to be highly porous and hollow. The proposed process therefore offers the potential for the efficient recovery of metallic porous gold fibers using combined biosorption and incineration.


Assuntos
Corynebacterium glutamicum/química , Ouro/química , Ouro/isolamento & purificação , Ultrafiltração/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Água/química , Adsorção , Incineração , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...