Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Xray Sci Technol ; 22(1): 63-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24463386

RESUMO

In tissue elasticity imaging, measuring the strain tensor components is necessary to solve the inverse problem. However, it is impractical to measure all the tensor components in ultrasound or MRI elastography because of their anisotropic spatial resolution. The objective of this study is to compute 3D strain tensor maps from the 3D CT images of a tissue-mimicking phantom. We took 3D micro-CT images of the phantom twice with applying two different mechanical compressions to it. Applying the 3D image correlation technique to the CT images under different compression, we computed 3D displacement vectors and strain tensors at every pixel. To evaluate the accuracy of the strain tensor maps, we made a 3D FEM model of the phantom, and we computed strain tensor maps through FEM simulation. Experimentally obtained strain tensor maps showed similar patterns to the FEM-simulated ones in visual inspection. The correlation between the strain tensor maps obtained from the experiment and the FEM simulation ranges from 0.03 to 0.93. Even though the strain tensor maps suffer from high level noise, we expect the x-ray strain tensor imaging may find some biomedical applications such as malignant tissue characterization and stress analysis inside the tissues.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X/métodos , Simulação por Computador , Análise de Elementos Finitos , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...