Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nurs Scholarsh ; 56(4): 507-516, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38402575

RESUMO

INTRODUCTION: Inpatients need to recognize their fall risk accurately and objectively. Nurses need to assess how patients perceive their fall risk and identify the factors that influence patients' fall risk perception. PURPOSE: This study aims to explore the congruency between nurses' fall risk assessment and patients' perception of fall risk and identify factors related to the non-congruency of fall risk. DESIGNS: A descriptive and cross-sectional design was used. The study enrolled 386 patients who were admitted to an acute care hospital. Six nurses assessed the participants' fall risk. Congruency was classified using the Morse Fall Scale for nurses and the Fall Risk Perception Questionnaire for patients. FINDINGS: The nurses' fall risk assessments and patients' fall risk perceptions were congruent in 57% of the participants. Underestimation of the patient's risk of falling was associated with gender (women), long hospitalization period, department (orthopedics), low fall efficacy, and history of falls before hospitalization. Overestimation of fall risk was associated with age group, gender (men), department, and a high health literacy score. In the multiple logistic regression, the factors related to the underestimation of fall risk were hospitalization period and department, and the factors related to the overestimation of fall risk were health literacy and department. CONCLUSIONS: Nurses should consider the patient's perception of fall risk and incorporate it into fall prevention interventions. CLINICAL RELEVANCE: Nurses need to evaluate whether patients perceive the risk of falling consistently. For patients who underestimate or overestimate their fall risk, it may be helpful to consider clinical and fall-related characteristics together when evaluating their perception of fall risk.


Assuntos
Acidentes por Quedas , Humanos , Acidentes por Quedas/prevenção & controle , Acidentes por Quedas/estatística & dados numéricos , Feminino , Masculino , Estudos Transversais , Medição de Risco , Pessoa de Meia-Idade , Idoso , Adulto , Inquéritos e Questionários , Recursos Humanos de Enfermagem Hospitalar/psicologia , Recursos Humanos de Enfermagem Hospitalar/estatística & dados numéricos , Pacientes Internados/psicologia , Pacientes Internados/estatística & dados numéricos , Idoso de 80 Anos ou mais , Percepção
2.
Mol Cell ; 81(24): 5082-5098.e11, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34699746

RESUMO

Cell state changes are associated with proteome remodeling to serve newly emergent cell functions. Here, we show that NGN2-driven conversion of human embryonic stem cells to induced neurons (iNeurons) is associated with increased PINK1-independent mitophagic flux that is temporally correlated with metabolic reprogramming to support oxidative phosphorylation. Global multiplex proteomics during neurogenesis revealed large-scale remodeling of functional modules linked with pluripotency, mitochondrial metabolism, and proteostasis. Differentiation-dependent mitophagic flux required BNIP3L and its LC3-interacting region (LIR) motif, and BNIP3L also promoted mitophagy in dopaminergic neurons. Proteomic analysis of ATG12-/- iNeurons revealed accumulation of endoplasmic reticulum, Golgi, and mitochondria during differentiation, indicative of widespread organelle remodeling during neurogenesis. This work reveals broad organelle remodeling of membrane-bound organelles during NGN2-driven neurogenesis via autophagy, identifies BNIP3L's central role in programmed mitophagic flux, and provides a proteomic resource for elucidating how organelle remodeling and autophagy alter the proteome during changes in cell state.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/enzimologia , Mitofagia , Células-Tronco Neurais/enzimologia , Neurogênese , Neurônios/enzimologia , Proteoma , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Linhagem Celular , Humanos , Proteínas de Membrana/genética , Mitocôndrias/genética , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteostase , Proteínas Proto-Oncogênicas/genética , Fatores de Tempo , Proteínas Supressoras de Tumor/genética
3.
Development ; 146(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31023875

RESUMO

Bicaudal-C (Bicc1) is a conserved RNA-binding protein that represses the translation of selected mRNAs to control development. In Xenopus embryos, Bicc1 binds and represses specific maternal mRNAs to control anterior-posterior cell fates. However, it is not known how Bicc1 binds its RNA targets or how binding affects Bicc1-dependent embryogenesis. Focusing on the KH domains, we analyzed Bicc1 mutants for their ability to bind RNA substrates in vivo and in vitro Analyses of these Bicc1 mutants demonstrated that a single KH domain, KH2, was crucial for RNA binding in vivo and in vitro, while the KH1 and KH3 domains contributed minimally. The Bicc1 mutants were also assayed for their ability to repress translation, and results mirrored the RNA-binding data, with KH2 being the only domain essential for repression. Finally, maternal knockdown and rescue experiments indicated that the KH domains were essential for the regulation of embryogenesis by Bicc1. These data advance our understanding of how Bicc1 selects target mRNAs and provide the first direct evidence that the RNA binding functions of Bicc1 are essential for both Bicc1-dependent translational repression and maternal vertebrate development.


Assuntos
RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Xenopus/metabolismo , Regiões 3' não Traduzidas/genética , Regiões 3' não Traduzidas/fisiologia , Animais , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Immunoblotting , Imunoprecipitação , Ligação Proteica , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Xenopus/genética , Xenopus laevis
4.
Cell Signal ; 44: 1-9, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29284139

RESUMO

Sonic Hedgehog (Shh) signaling plays key regulatory roles in embryonic development and postnatal homeostasis and repair. Modulation of the Shh pathway is known to cause malformations and malignancies associated with dysregulated tissue growth. However, our understanding of the molecular mechanisms by which Shh regulates cellular proliferation is incomplete. Here, using mouse embryonic fibroblasts, we demonstrate that the Forkhead box gene Foxd1 is transcriptionally regulated by canonical Shh signaling and required for downstream proliferative activity. We show that Foxd1 deletion abrogates the proliferative response to SHH ligand while FOXD1 overexpression alone is sufficient to induce cellular proliferation. The proliferative response to both SHH ligand and FOXD1 overexpression was blocked by pharmacologic inhibition of cyclin-dependent kinase signaling. Time-course experiments revealed that Shh pathway activation of Foxd1 is followed by downregulation of Cdkn1c, which encodes a cyclin-dependent kinase inhibitor. Consistent with a direct transcriptional regulation mechanism, we found that FOXD1 reduces reporter activity of a Fox enhancer sequence in the second intron of Cdkn1c. Supporting the applicability of these findings to specific biological contexts, we show that Shh regulation of Foxd1 and Cdkn1c is recapitulated in cranial neural crest cells and provide evidence that this mechanism is operational during upper lip morphogenesis. These results reveal a novel Shh-Foxd1-Cdkn1c regulatory circuit that drives the mitogenic action of Shh signaling and may have broad implications in development and disease.


Assuntos
Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas Hedgehog/metabolismo , Crista Neural/crescimento & desenvolvimento , Animais , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Regulação da Expressão Gênica , Camundongos , Cultura Primária de Células , Transdução de Sinais
5.
J Vis Exp ; (125)2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28784977

RESUMO

Native polyacrylamide gel electrophoresis is a fundamental tool of molecular biology that has been used extensively for the biochemical analysis of RNA-protein interactions. These interactions have been traditionally analyzed with polyacrylamide gels generated between two glass plates and samples electrophoresed vertically. However, polyacrylamide gels cast in trays and electrophoresed horizontally offers several advantages. For example, horizontal gels used to analyze complexes between fluorescent RNA substrates and specific proteins can be imaged multiple times as electrophoresis progresses. This provides the unique opportunity to monitor RNA-protein complexes at several points during the experiment. In addition, horizontal gel electrophoresis makes it possible to analyze many samples in parallel. This can greatly facilitate time course experiments as well as analyzing multiple reactions simultaneously to compare different components and conditions. Here we provide a detailed protocol for generating and using horizontal native gel electrophoresis for analyzing RNA-Protein interactions.


Assuntos
Eletroforese em Gel de Poliacrilamida , Proteínas/metabolismo , RNA/metabolismo , Animais , Corantes Fluorescentes/química , Proteínas de Neoplasias/genética , Ligação Proteica , Proteínas/química , RNA/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Gravação em Vídeo , Xenopus/metabolismo
7.
Adv Exp Med Biol ; 953: 49-82, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27975270

RESUMO

The selective translation of maternal mRNAs encoding cell-fate determinants drives the earliest decisions of embryogenesis that establish the vertebrate body plan. This chapter will discuss studies in Xenopus laevis that provide insights into mechanisms underlying this translational control. Xenopus has been a powerful model organism for many discoveries relevant to the translational control of maternal mRNAs because of the large size of its oocytes and eggs that allow for microinjection of molecules and the relative ease of manipulating the oocyte to egg transition (maturation) and fertilization in culture. Consequently, many key studies have focused on the expression of maternal mRNAs during the oocyte to egg transition (the meiotic cell cycle) and the rapid cell divisions immediately following fertilization. This research has made seminal contributions to our understanding of translational regulatory mechanisms, but while some of the mRNAs under consideration at these stages encode cell-fate determinants, many encode cell cycle regulatory proteins that drive these early cell cycles. In contrast, while maternal mRNAs encoding key developmental (i.e., cell-fate) regulators that function after the first cleavage stages may exploit aspects of these foundational mechanisms, studies reveal that these mRNAs must also rely on distinct and, as of yet, incompletely understood mechanisms. These findings are logical because the functions of such developmental regulatory proteins have requirements distinct from cell cycle regulators, including becoming relevant only after fertilization and then only in specific cells of the embryo. Indeed, key maternal cell-fate determinants must be made available in exquisitely precise amounts (usually low), only at specific times and in specific cells during embryogenesis. To provide an appreciation for the regulation of maternal cell-fate determinant expression, an overview of the maternal phase of Xenopus embryogenesis will be presented. This section will be followed by a review of translational mechanisms operating in oocytes, eggs, and early cleavage-stage embryos and conclude with a discussion of how the regulation of key maternal cell-fate determinants at the level of translation functions in Xenopus embryogenesis. A key theme is that the molecular asymmetries critical for forming the body axes are established and further elaborated upon by the selective temporal and spatial regulation of maternal mRNA translation.


Assuntos
Desenvolvimento Embrionário/genética , Biossíntese de Proteínas , RNA Mensageiro/biossíntese , Xenopus laevis/crescimento & desenvolvimento , Animais , Ciclo Celular/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , RNA Mensageiro/genética , Transcrição Gênica , Xenopus laevis/genética
8.
Development ; 143(5): 864-71, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26811381

RESUMO

Vertebrate Bicaudal-C (Bicc1) has important biological roles in the formation and homeostasis of multiple organs, but direct experiments to address the role of maternal Bicc1 in early vertebrate embryogenesis have not been reported. Here, we use antisense phosphorothioate-modified oligonucleotides and the host-transfer technique to eliminate specifically maternal stores of both bicc1 mRNA and Bicc1 protein from Xenopus laevis eggs. Fertilization of these Bicc1-depleted eggs produced embryos with an excess of dorsal-anterior structures and overexpressed organizer-specific genes, indicating that maternal Bicc1 is crucial for normal embryonic patterning of the vertebrate embryo. Bicc1 is an RNA-binding protein with robust translational repression function. Here, we show that the maternal mRNA encoding the cell-fate regulatory protein Wnt11b is a direct target of Bicc1-mediated repression. It is well established that the Wnt signaling pathway is crucial to vertebrate embryogenesis. Thus, the work presented here links the molecular function of Bicc1 in mRNA target-specific translation repression to its biological role in the maternally controlled stages of vertebrate embryogenesis.


Assuntos
Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Ligação a RNA/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Desenvolvimento Embrionário , Feminino , MicroRNAs/metabolismo , Mutação , Oligonucleotídeos Antissenso/genética , Oócitos/metabolismo , Fenótipo , RNA Mensageiro/metabolismo , RNA Mensageiro Estocado/genética , Transdução de Sinais , Transcrição Gênica
9.
J Biol Chem ; 289(11): 7497-504, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24478311

RESUMO

Bicaudal-C (Bic-C) RNA binding proteins function as important translational repressors in multiple biological contexts within metazoans. However, their RNA binding sites are unknown. We recently demonstrated that Bic-C functions in spatially regulated translational repression of the xCR1 mRNA during Xenopus development. This repression contributes to normal development by confining the xCR1 protein, a regulator of key signaling pathways, to specific cells of the embryo. In this report, we combined biochemical approaches with in vivo mRNA reporter assays to define the minimal Bic-C target site within the xCR1 mRNA. This 32-nucleotide Bic-C target site is predicted to fold into a stem-loop secondary structure. Mutational analyses provided evidence that this stem-loop structure is important for Bic-C binding. The Bic-C target site was sufficient for Bic-C mediated repression in vivo. Thus, we describe the first RNA binding site for a Bic-C protein. This identification provides an important step toward understanding the mechanisms by which evolutionarily conserved Bic-C proteins control cellular function in metazoans.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , RNA/química , Proteínas de Xenopus/metabolismo , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Sítios de Ligação , Luciferases/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , RNA Mensageiro/metabolismo , Ribonucleases/metabolismo , Xenopus laevis
10.
RNA ; 19(11): 1575-82, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24062572

RESUMO

The Xenopus Cripto-1 protein is confined to the cells of the animal hemisphere during early embryogenesis where it regulates the formation of anterior structures. Cripto-1 protein accumulates only in animal cells because cripto-1 mRNA in cells of the vegetal hemisphere is translationally repressed. Here, we show that the RNA binding protein, Bicaudal-C (Bic-C), functioned directly in this vegetal cell-specific repression. While Bic-C protein is normally confined to vegetal cells, ectopic expression of Bic-C in animal cells repressed a cripto-1 mRNA reporter and associated with endogenous cripto-1 mRNA. Repression by Bic-C required its N-terminal domain, comprised of multiple KH motifs, for specific binding to relevant control elements within the cripto-1 mRNA and a functionally separable C-terminal translation repression domain. Bic-C-mediated repression required the 5' CAP and translation initiation factors, but not a poly(A) tail or the conserved SAM domain within Bic-C. Bic-C-directed immunoprecipitation followed by deep sequencing of associated mRNAs identified multiple Bic-C-regulated mRNA targets, including cripto-1 mRNA, providing new insights and tools for understanding the role of Bic-C in vertebrate development.


Assuntos
Proteínas Ligadas por GPI/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Xenopus/biossíntese , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana , Biossíntese de Proteínas , Estrutura Terciária de Proteína , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo , Proteínas de Ligação a RNA/química , Análise de Sequência de RNA , Proteínas de Xenopus/química , Xenopus laevis/metabolismo
11.
Proc Natl Acad Sci U S A ; 108(35): 14572-7, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21844336

RESUMO

The posttranslational addition of palmitate to cysteines occurs ubiquitously in eukaryotic cells, where it functions in anchoring target proteins to membranes and in vesicular trafficking. Here we show that the Saccharomyces cerevisiae palmitoyltransferase Pfa4 enhanced heterochromatin formation at the cryptic mating-type loci HMR and HML via Rif1, a telomere regulatory protein. Acylated Rif1 was detected in extracts from wild-type but not pfa4Δ mutant cells. In a pfa4Δ mutant, Rif1-GFP dispersed away from foci positioned at the nuclear periphery into the nucleoplasm. Sir3-GFP distribution was also perturbed, indicating a change in the nuclear dynamics of heterochromatin proteins. Genetic analyses indicated that PFA4 functioned upstream of RIF1. Surprisingly, the pfa4Δ mutation had only mild effects on telomeric regulation, suggesting Rif1's roles at HM loci and telomeres were more complexly related than previously thought. These data supported a model in which Pfa4-dependent palmitoylation of Rif1 anchored it to the inner nuclear membrane, influencing its role in heterochromatin dynamics.


Assuntos
Heterocromatina/metabolismo , Proteínas Repressoras/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomycetales/genética , Proteínas de Ligação a Telômeros/fisiologia , Acilação , Aciltransferases/fisiologia , Lipoilação , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Telômero
12.
Genes Dev ; 24(13): 1418-33, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20595233

RESUMO

The origin recognition complex (ORC) binds to the specific positions on chromosomes that serve as DNA replication origins. Although ORC is conserved from yeast to humans, the DNA sequence elements that specify ORC binding are not. In particular, metazoan ORC shows no obvious DNA sequence specificity, whereas yeast ORC binds to a specific DNA sequence within all yeast origins. Thus, whereas chromatin must play an important role in metazoan ORC's ability to recognize origins, it is unclear whether chromatin plays a role in yeast ORC's recognition of origins. This study focused on the role of the conserved N-terminal bromo-adjacent homology domain of yeast Orc1 (Orc1BAH). Recent studies indicate that BAH domains are chromatin-binding modules. We show that the Orc1BAH domain was necessary for ORC's stable association with yeast chromosomes, and was physiologically relevant to DNA replication in vivo. This replication role was separable from the Orc1BAH domain's previously defined role in transcriptional silencing. Genome-wide analyses of ORC binding in ORC1 and orc1bahDelta cells revealed that the Orc1BAH domain contributed to ORC's association with most yeast origins, including a class of origins highly dependent on the Orc1BAH domain for ORC association (orc1bahDelta-sensitive origins). Orc1bahDelta-sensitive origins required the Orc1BAH domain for normal activity on chromosomes and plasmids, and were associated with a distinct local nucleosome structure. These data provide molecular insights into how the Orc1BAH domain contributes to ORC's selection of replication origins, as well as new tools for examining conserved mechanisms governing ORC's selection of origins within eukaryotic chromosomes.


Assuntos
Cromatina/genética , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Origem de Replicação/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Sítios de Ligação , Sequência Conservada , Replicação do DNA , Estrutura Terciária de Proteína , Deleção de Sequência/genética
13.
Plant Physiol ; 148(1): 246-58, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18660433

RESUMO

CDC48/p97 is a conserved homohexameric AAA-ATPase chaperone required for a variety of cellular processes but whose role in the development of a multicellular model system has not been examined. Here, we have used reverse genetics, visualization of a functional Arabidopsis (Arabidopsis thaliana) CDC48 fluorescent fusion protein, and morphological analysis to examine the subcellular distribution and requirements for AtCDC48A in planta. Homozygous Atcdc48A T-DNA insertion mutants arrest during seedling development, exhibiting decreased cell expansion and displaying pleiotropic defects in pollen and embryo development. Atcdc48A insertion alleles show significantly reduced male transmission efficiency due to defects in pollen tube growth. Yellow fluorescent protein-AtCDC48A, a fusion protein that functionally complements the insertion mutant defects, localizes in the nucleus and cytoplasm and is recruited to the division mid-zone during cytokinesis. The pattern of nuclear localization differs according to the stage of the cell cycle and differentiation state. Inducible expression of an Atcdc48A Walker A ATPase mutant in planta results in cytokinesis abnormalities, aberrant cell divisions, and root trichoblast differentiation defects apparent in excessive root hair emergence. At the biochemical level, our data suggest that the endogenous steady-state protein level of AtCDC48A is dependent upon the presence of ATPase-active AtCDC48A. These results demonstrate that CDC48A/p97 is critical for cytokinesis, cell expansion, and differentiation in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Crescimento Celular , Citocinese , ATPases Associadas a Diversas Atividades Celulares , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Homozigoto , Mutagênese Insercional , Fenótipo , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Pólen/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Plântula/metabolismo
14.
J Biol Chem ; 282(8): 5217-24, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17190830

RESUMO

CDC48/p97 is an essential AAA-ATPase chaperone that functions in numerous diverse cellular activities through its interaction with specific adapter proteins. The ubiquitin regulatory X (UBX)-containing protein, PUX1, functions to regulate the hexameric structure and ATPase activity of AtCDC48. To characterize the biochemical mechanism of PUX1 action on AtCDC48, we have defined domains of both PUX1 and AtCDC48 that are critical for interaction and oligomer disassembly. Binding of PUX1 to AtCDC48 was mediated through a region containing both the UBX domain and the immediate C-terminal flanking amino acids (UBX-C). Like other UBX domains, the primary binding site for the UBX-C of PUX1 is the N(a) domain of AtCDC48. Alternative plant PUX protein UBX domains also bind AtCDC48 through the N terminus but were found not to be able to substitute for the action imparted by the UBX-C of PUX1 in hexamer disassembly, suggesting unique features for the UBX-C of PUX1. We propose that the PUX1 UBX-C domain modulates a second binding site on AtCDC48 required for the N-terminal domain of PUX1 to interact with and promote dissociation of the AtCDC48 hexamer. Utilizing Atcdc48 ATP hydrolysis and binding mutants, we demonstrate that PUX1 binding was not affected but that hexamer disassembly was significantly influenced by the ATP status of AtCDC48. ATPase activity in both the D1 and the D2 domains was critical for PUX1-mediated AtCDC48 hexamer disassembly. Together these results provide new mechanistic insight into how the hexameric status and ATPase activity of AtCDC48 are modulated.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Chaperonas Moleculares/metabolismo , Adenosina Trifosfatases/genética , Sequência de Aminoácidos/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sítios de Ligação/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Chaperonas Moleculares/genética , Mutação , Ligação Proteica/genética , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína/genética , Deleção de Sequência , Proteína com Valosina
15.
J Biol Chem ; 279(52): 54264-74, 2004 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-15498773

RESUMO

p97/CDC48 is a highly abundant hexameric AAA-ATPase that functions as a molecular chaperone in numerous diverse cellular activities. We have identified an Arabidopsis UBX domain-containing protein, PUX1, which functions to regulate the oligomeric structure of the Arabidopsis homolog of p97/CDC48, AtCDC48, as well as mammalian p97. PUX1 is a soluble protein that co-fractionates with non-hexameric AtCDC48 and physically interacts with AtCDC48 in vivo. Binding of PUX1 to AtCDC48 is mediated through the UBX-containing C-terminal domain. However, disassembly of the chaperone is dependent upon the N-terminal domain of PUX1. These findings provide evidence that the assembly and disassembly of the hexameric p97/CDC48 complex is a dynamic process. This new unexpected level of regulation for p97/CDC48 was demonstrated to be critical in vivo as pux1 loss-of-function mutants display accelerated growth relative to wild-type plants. These results suggest a role for AtCDC48 and PUX1 in regulating plant growth.


Assuntos
Proteínas de Arabidopsis/fisiologia , Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Adenosina Trifosfatases , Sequência de Aminoácidos , Animais , Arabidopsis/química , Arabidopsis/embriologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Cromatografia de Afinidade , Escherichia coli/genética , Expressão Gênica , Immunoblotting , Cinética , Camundongos , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Reação em Cadeia da Polimerase , Proteínas Recombinantes de Fusão , Sementes/crescimento & desenvolvimento , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade , Proteína com Valosina
16.
Plant Physiol ; 130(3): 1241-53, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12427991

RESUMO

The components of the cellular machinery that accomplish the various complex and dynamic membrane fusion events that occur at the division plane during plant cytokinesis, including assembly of the cell plate, are not fully understood. The most well-characterized component, KNOLLE, a cell plate-specific soluble N-ethylmaleimide-sensitive fusion protein (NSF)-attachment protein receptor (SNARE), is a membrane fusion machine component required for plant cytokinesis. Here, we show the plant ortholog of Cdc48p/p97, AtCDC48, colocalizes at the division plane in dividing Arabidopsis cells with KNOLLE and another SNARE, the plant ortholog of syntaxin 5, SYP31. In contrast to KNOLLE, SYP31 resides in defined punctate membrane structures during interphase and is targeted during cytokinesis to the division plane. In vitro-binding studies demonstrate that AtCDC48 specifically interacts in an ATP-dependent manner with SYP31 but not with KNOLLE. In contrast, we show that KNOLLE assembles in vitro into a large approximately 20S complex in an Sec18p/NSF-dependent manner. These results suggest that there are at least two distinct membrane fusion pathways involving Cdc48p/p97 and Sec18p/NSF that operate at the division plane to mediate plant cytokinesis. Models for the role of AtCDC48 and SYP31 at the division plane will be discussed.


Assuntos
Arabidopsis/fisiologia , Proteínas de Ciclo Celular/metabolismo , Fusão de Membrana/fisiologia , Proteínas de Transporte Vesicular , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Divisão Celular/fisiologia , Etilmaleimida/metabolismo , Imuno-Histoquímica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Proteínas Sensíveis a N-Etilmaleimida , Proteínas Nucleares/metabolismo , Isoformas de Proteínas , Proteínas Qa-SNARE , Proteínas SNARE , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida , Proteína com Valosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...