Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 14(35): e1801948, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30073794

RESUMO

Nanostructured graphene electrodes generally have a low density, which can limit the volumetric performance for energy storage devices. The liquid-phase mild reduction process of graphene oxide sheets is combined with the continuous aerosol densification process to produce high-density graphene agglomerates in the form of microspheres. The produced graphene assembly shows the cabbage-like morphology with a high density of 0.75 g cm-3 . In spite of such high density, the cabbage-like graphene microspheres have narrow-ranged mesopores and a high surface area. The cabbage-like graphene microsphere exhibits both high gravimetric and volumetric energy densities due to the optimized microstructure, which shows a high gravimetric capacitance of 177 F g-1 and volumetric capacitance of 117 F cm-3 in supercapacitors. As a cathode for lithium-ion capacitors, the cabbage-like graphene delivers a reversible capacity of ≈176 mAh g-1 . The stacking-control approach provides a new pathway to control the microstructure of the graphene assembly and corresponding charge storage characteristics for energy storage applications.

2.
Sci Rep ; 6: 33236, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27622908

RESUMO

Pt nanoparticles-laden graphene (Pt/GR) composites were synthesized in the gas phase from a mixture of ethanol and Pt precursor by microwave plasma spray pyrolysis. The morphology of Pt/GR composites has the shape of wrinkled sheets of paper, while Pt nanoparticles (Pt NPs) that are less than 2.6 nm in the mean diameter are uniformly well deposited on the surface of GR sheets stacked in only three layers. The Pt/GR composite prepared with 20 wt% of Pt had the highest specific surface area and electrochemical surface area of up to 402 m(2) g(-1) and 77 m(2) g(-1) (Pt), respectively. In addition, the composite showed superior electrocatalytic activity compared with commercial Pt-carbon black. The excellent electrocatalytic activity was attributed to the high specific surface area and electrochemical surface area of the Pt/GR composite directly produced by microwave plasma spray pyrolysis. Thus, it is clearly expected that the Pt/GR composite is a promising material for DMFC catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...