Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 23(8): e13644, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35579090

RESUMO

PURPOSE: The objective of this study was to fabricate an anthropomorphic multimodality pelvic phantom to evaluate a deep-learning-based synthetic computed tomography (CT) algorithm for magnetic resonance (MR)-only radiotherapy. METHODS: Polyurethane-based and silicone-based materials with various silicone oil concentrations were scanned using 0.35 T MR and CT scanner to determine the tissue surrogate. Five tissue surrogates were determined by comparing the organ intensity with patient CT and MR images. Patient-specific organ modeling for three-dimensional printing was performed by manually delineating the structures of interest. The phantom was finally fabricated by casting materials for each structure. For the quantitative evaluation, the mean and standard deviations were measured within the regions of interest on the MR, simulation CT (CTsim ), and synthetic CT (CTsyn ) images. Intensity-modulated radiation therapy plans were generated to assess the impact of different electron density assignments on plan quality using CTsim and CTsyn . The dose calculation accuracy was investigated in terms of gamma analysis and dose-volume histogram parameters. RESULTS: For the prostate site, the mean MR intensities for the patient and phantom were 78.1 ± 13.8 and 86.5 ± 19.3, respectively. The mean intensity of the synthetic image was 30.9 Hounsfield unit (HU), which was comparable to that of the real CT phantom image. The original and synthetic CT intensities of the fat tissue in the phantom were -105.8 ± 4.9 HU and -107.8 ± 7.8 HU, respectively. For the target volume, the difference in D95% was 0.32 Gy using CTsyn with respect to CTsim values. The V65Gy values for the bladder in the plans using CTsim and CTsyn were 0.31% and 0.15%, respectively. CONCLUSION: This work demonstrated that the anthropomorphic phantom was physiologically and geometrically similar to the patient organs and was employed to quantitatively evaluate the deep-learning-based synthetic CT algorithm.


Assuntos
Aprendizado Profundo , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pelve/diagnóstico por imagem , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos
2.
Ultrason Sonochem ; 79: 105769, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34598104

RESUMO

In acoustic droplet vaporization (ADV), a cavitated bubble grows and collapses depending on the pressure amplitude of the acoustic pulse. During the bubble collapse, the surrounding liquid is compressed to high pressure, and liquid compressibility can have a significant impact on bubble behavior and ADV threshold. In this work, a one-dimensional numerical model considering liquid compressibility is presented for ADV of a volatile microdroplet, extending our previous Rayleigh-Plesset based model [Ultrason. Chem. 71 (2021) 105361]. The numerical results for bubble motion and liquid energy change in ADV show that the liquid compressibility highly inhibits bubble growth during bubble collapse and rebound, especially under high acoustic frequency conditions. The liquid compressibility effect on the ADV threshold is quantified with varying acoustic frequencies and amplitudes.

3.
Ultrason Sonochem ; 71: 105361, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33160151

RESUMO

A numerical model is presented for the acoustic vaporization threshold of a dodecafluoropentane (or perfluoropentane) microdroplet. The model is based on the Rayleigh-Plesset equation and is improved by properly treating the supercritical state that occurs when a bubble collapses rapidly and by employing the van der Waals equation of state to consider the supercritical state. The present computations demonstrate that the microdroplet vaporization behavior depends intricately on bubble compressibility, liquid inertia and phase-change heat transfer under acoustic excitation conditions. We present acoustic pressure-frequency diagrams for bubble growth regimes and the ADV threshold conditions. The effects of acoustic parameters, fluid properties and the droplet radius on the ADV threshold are investigated.

4.
Med Phys ; 47(9): 3789-3796, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32535940

RESUMO

PURPOSE: Obtaining an integral depth-dose (IDD) curve using a recently developed acrylic-disk radiation sensor (ADRS) is time-consuming because its single structure requires point-by-point measurements in a water phantom. The goal of this study was to verify the ability of a newly designed multilayer ADRS, composed of 20 layers, to measure the energy of proton pencil beam scanning (PBS) in patient-specific quality assurance (QA). MATERIALS AND METHODS: The multilayer ADRS consisted of a disk-type transmitter, with a diameter of 15 cm and with a thickness of 1 mm, surrounded by a thin optical fiber; this ADRS provided a higher spatial resolution than the single ADRS, which was 2 mm. The dosimetric characteristics of the multilayer ADRS were determined to accurately measure the energy delivered layer-by-layer. We selected five patients to verify the energy measured using the multilayer ADRS from the actual clinical proton therapy plans. The accuracy of the results measured using the multilayer ADRS was compared with that of measurements by a Bragg peak ionization chamber (IC) and that calculated by a Monte Carlo TOPAS simulation. RESULTS: The difference between the multilayer ADRS measurements and those of the TOPAS simulation was within 1% for all patients. The ranges, corresponding to the beam energies for each patient, measured using the multilayer ADRS were closer to those calculated using the TOPAS simulation than those measured using the Bragg peak IC. CONCLUSIONS: The multilayer ADRS is well suited to verifying the energy of a pencil beam. The acrylic materials used in its configuration make this device easier to use and more cost-effective than conventional detectors. This device, with its high extensibility and stability, may be applicable as a new dosimetry tool for PBS.


Assuntos
Terapia com Prótons , Estudos de Viabilidade , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...