Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(48): e2303681, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37527527

RESUMO

A droplet possesses the ubiquity and potential to harvest a vast amount of energy. To exploit droplets effectively, a novel output enhancement strategy that can coexist and create synergy with the recently studied droplet-based electricity generator (DEG) and material/surface structure modification must be investigated. In this study, a mechanical buckling-based 4D printed elastic hybrid droplet-based electricity generator (HDEG) consisting of a DEG and solid-solid triboelectric nanogenerator (S-S TENG) is first presented. During the electricity generation process of the DEG by droplet impact, the HDEG structure, which is merged via a simple 4D printing technique, permits the conversion of dissipated energy into elastic energy, resulting in an S-S TENG output. The HDEG outputs are naturally integrated owing to the simultaneous activation of a single droplet, resulting in an approximately 30% improvement over the output of a single DEG. Internal and external parametric studies are performed as HDEG design guidelines. The HDEG exhibits a 25% better energy supply performance than that of a single DEG, demonstrating its applicability as a power source. This research proposes the way toward a hybrid system that efficiently harvests energy from ubiquitous droplets.

2.
Micromachines (Basel) ; 14(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37374794

RESUMO

This study investigates the motion characteristics of soft alginate microrobots in complex fluidic environments utilizing wireless magnetic fields for actuation. The aim is to explore the diverse motion modes that arise due to shear forces in viscoelastic fluids by employing snowman-shaped microrobots. Polyacrylamide (PAA), a water-soluble polymer, is used to create a dynamic environment with non-Newtonian fluid properties. Microrobots are fabricated via an extrusion-based microcentrifugal droplet method, successfully demonstrating the feasibility of both wiggling and tumbling motions. Specifically, the wiggling motion primarily results from the interplay between the viscoelastic fluid environment and the microrobots' non-uniform magnetization. Furthermore, it is discovered that the viscoelasticity properties of the fluid influence the motion behavior of the microrobots, leading to non-uniform behavior in complex environments for microrobot swarms. Through velocity analysis, valuable insights into the relationship between applied magnetic fields and motion characteristics are obtained, facilitating a more realistic understanding of surface locomotion for targeted drug delivery purposes while accounting for swarm dynamics and non-uniform behavior.

3.
Environ Res ; 222: 115343, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696945

RESUMO

Ronidazole (RDZ) is a veterinary antibiotic drug that has been used in animal husbandry as feed. However, improper disposal and illegal use of pharmaceuticals have severely polluted water resources. Doping/substitution of metal ions is an effective strategy to change the material's crystal phase, morphology, and electrocatalytic activity. In this work, nickel (Ni2+)-doped cobalt molybdate microrods (NCMO MRs) were prepared for the electrochemical detection of RDZ. The catalyst was prepared by reflux method followed by calcination at 500 °C. The prepared catalyst was confirmed by various spectroscopic and microscopic analyses. XRD and Raman spectroscopy demonstrated that the phase transition from ß-CoMoO4 to α-CoMoO4 was achieved by Ni2+ doping. The SEM analysis showed that cobalt molybdate (CMO) microrods were self-assembled during Ni2+ doping and formed an urchin-like structure, and the average diameter of the MRs was ±50 nm. The electrocatalytic activity of the catalysts was analyzed using the CV technique. The NCMO MRs/GCE exhibited the higher current response than the pristine CMO. The electron transfer coefficient (α = 0.56) and heterogeneous rate constant (ks = 0.32 s-1) of NCMO MRs/GCE were evaluated by kinetic studies. In addition, the diffusion coefficient of RDZ was determined to be 2.32 × 10-5 cm2/s. Moreover, NCMO MRs/GCE exhibits a low detection limit for RDZ (15 nM) as well as a higher sensitivity (1.57 µA µM-1 cm-2). The fabricated RDZ sensor was successfully applied to analysis of lake and tap water samples. Based on the results, we believe that the as-prepared NCMO MRs/GCE is a viable electrode material for RDZ sensors in environmental monitoring.


Assuntos
Níquel , Ronidazole , Animais , Cobalto , Cinética , Antibacterianos
4.
Carbohydr Polym ; 292: 119701, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35725185

RESUMO

Solar energy-based steam generation holds immense potential to tackle the problem of 1.1 billion people lacking access to freshwater and 2.7 billion experiencing freshwater scarcity at least one month a year. Efficient, portable, and universal photothermal materials are required for popularity of solar-driven evaporation systems. Herein, a facile one-pot process based on solution-processed vapor phase polymerization is adopted to fabricate polypyrrole-coated cellulose nanocrystals (CNC-PPy). The CNC-PPy dispersed in water is used as an ink (CNC-PPy ink) to create photothermal layers. The developed ink is readily laminated on diverse substrates utilizing a common paintbrush that firmly attached without any delamination after drying. The optimized cellulose membrane (6 coating cycles) presents an excellent evaporation rate of 1.96 Kg m-2 h-1 with corresponding light-to-vapor efficiency of 88.92 % at 1 sun. In addition, the CNC-PPy display excellent antibacterial and antifouling properties in powder and laminated forms against E. coli and S. aureus.


Assuntos
Incrustação Biológica , Polímeros , Antibacterianos/química , Antibacterianos/farmacologia , Incrustação Biológica/prevenção & controle , Celulose/química , Celulose/farmacologia , Escherichia coli , Humanos , Tinta , Polímeros/química , Polímeros/farmacologia , Pirróis/química , Staphylococcus aureus , Vapor
5.
Materials (Basel) ; 13(4)2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075240

RESUMO

Renewable energy harvesting technologies have been actively studied in recent years for replacing rapidly depleting energies, such as coal and oil energy. Among these technologies, the triboelectric nanogenerator (TENG), which is operated by contact-electrification, is attracting close attention due to its high accessibility, light weight, high shape adaptability, and broad applications. The characteristics of the contact layer, where contact electrification phenomenon occurs, should be tailored to enhance the electrical output performance of TENG. In this study, a portable imprinting device is developed to fabricate TENG in one step by easily tailoring the characteristics of the polydimethylsiloxane (PDMS) contact layer, such as thickness and morphology of the surface structure. These characteristics are critical to determine the electrical output performance. All parts of the proposed device are 3D printed with high-strength polylactic acid. Thus, it has lightweight and easy customizable characteristics, which make the designed system portable. Furthermore, the finger tapping-driven TENG of tailored PDMS contact layer with microstructures is fabricated and easily generates 350 V of output voltage and 30 µA of output current with a simple finger tapping motion-related biomechanical energy.

6.
Carbohydr Polym ; 231: 115746, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31888850

RESUMO

Gravity driven water filtration is a commonly used process of removing microorganism from the contaminated water. However, the existing strategies involve prolonged synthesis and toxic reducing agent for immobilization of silver nanoparticles (AgNPs) on cellulose membranes that are not suitable for routine handling. We have developed a non-toxic and environmentally benign method using TA mediated silver salt layer-by-layer (LbL) in-situ reduction method. Our LbL method exhibited the properties of controlled size and uniform distribution of in-site AgNPs on the surface of the membranes. The LbL deposited AgNPs hybrid membranes displayed an excellent antibacterial activity which have been validated through an efficient bacterial filtration performance against the Escherichia coli (E. coli). The present method for developing hybrid membranes offered a simple, rapid, low-cost, sustainable, and large-scale fabrication for bacterial filtration which could be used for the point-of-use applications, particularly at resource-limited and remote areas.

7.
ACS Macro Lett ; 9(2): 146-151, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35638674

RESUMO

Cellulose nanocrystals (CNCs) have drawn considerable attention for their use in optical and sensor applications due to their appealing properties of chiral nematic photonic structures. However, the flexibility and water instability of neat CNC chiral nematic films are questionable and compromise their outstanding properties. We propose a room-temperature process for fabricating flexible, water-stable chiral nematic CNC films. Aqueous glutaraldehyde (GA) was first mixed with CNCs, and then free-standing films were formed by evaporation-induced self-assembly. The chiral nematic dry films that formed were then exposed to hydrochloric acid vapor for subsequent GA cross-linking with CNCs. The GA cross-linked CNC films had a highly ordered chiral nematic organization. The enhanced water stability of the films was demonstrated by using GA cross-linked CNC films as freestanding template substrates for conducting polymers (polypyrrole) and metal oxides (iron oxide) to form flexible chiral nematic photonic hybrids.

8.
J Biomed Mater Res B Appl Biomater ; 108(3): 1000-1009, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31389179

RESUMO

Despite the potential of a collagen construct with a stiffness gradient for investigating cell-extracellular matrix (ECM) stiffness interaction or recapitulating an in vivo tissue interface, it has been developed in a limited way due to the low and poorly controllable mechanical properties of the collagen. This study proposes a novel fabrication process to achieve a compressed collagen construct with a stiffness gradient, named COSDIENT, at a level of ~ 1 MPa while maintaining in vivo ECM-like dense collagen fibrillar structures. The COSDIENT was fabricated by collagen compression followed by grayscale mask-assisted UV-riboflavin crosslinking. The collagen compression process enabled the remarkable increase in the stiffness of the collagen gel from ~ 1-10 kPa to ~ 1 MPa by physical compaction. The subsequent UV-riboflavin crosslinking with a continuous-tone grayscale mask could simply generate a gradual change of UV irradiation followed by modulating riboflavin-mediated crosslinking, thereby resulting in a continuous stiffness gradient with a range of 1.16-4.38 MPa in the single compressed collagen construct. The suggested grayscale mask-assisted photochemical crosslinking had no effect on the physical and optical properties of the original compressed collagen construct, while inducing gradual changes of chemical bonds among collagen fibrils. A skin wound healing assay with epidermal keratinocytes was finally applied as an application example of the COSDIENT to examine the effect of stiffness on the skin keratinocyte behavior.


Assuntos
Colágeno/química , Reagentes de Ligações Cruzadas/química , Animais , Linhagem Celular , Força Compressiva , Módulo de Elasticidade , Matriz Extracelular/metabolismo , Humanos , Queratinócitos/citologia , Fotoquímica , Pressão , Ratos , Riboflavina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Resistência à Tração , Engenharia Tecidual , Raios Ultravioleta , Cicatrização/efeitos dos fármacos
9.
J Mater Chem B ; 6(35): 5530-5539, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32254963

RESUMO

The generation of physiologically aligned multinucleated myotubes is critical in the fabrication of functional engineered skeletal muscle. Although micro-/nano-topographical contact guidance, such as groove/ridge structures, has induced the alignment of muscle fibers by providing cells with extracellular matrix (ECM) topography, the complex biochemical microenvironment of the ECM cannot be recapitulated. Here, we report the enhancement of myogenic differentiation and maturation using muscle decellularized ECM (mdECM) and sinusoidal wavy surfaces, which provided a biochemical microenvironment and microscale contact guidance, respectively. Sinusoidal wavy polystyrene surfaces with wavelengths of 20, 40, and 80 µm were fabricated by a deep X-ray lithography-based process. The mdECM was prepared by decellularization of porcine tibialis anterior skeletal muscle. An mdECM coating significantly improved the surface wettability of polystyrene substrates and exhibited higher seeding efficiency, cell viability, and proliferation compared with collagen- and non-coating cases. The sinusoidal wavy surfaces induced well-aligned myotubes and showed significantly enhanced formation of myotubes and myogenic differentiation when the surface was coated with mdECM. Particularly, there was an approximately 1.5-2 fold improvement in morphological analysis and gene expression for mdECM-compared to non-coated sinusoidal wavy surfaces. These results suggest that the consideration of both topographical and biochemical environmental cues can generate a highly mimicked ECM environment, thereby providing cells with a synergistic effect on myogenic differentiation and maturation. The outcome of this study will be useful in developing of functional engineered muscle for application in tissue regeneration or a high-throughput in vitro model for drug screening.

10.
Biomed Microdevices ; 18(1): 3, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26683462

RESUMO

Establishing fundamentals for regulating cell behavior with engineered physical environments, such as topography and stiffness, requires a large number of cell culture experiments. However, cell culture experiments in cell-surface interaction studies are generally labor-intensive and time-consuming due to many experimental tasks, such as multiple fabrication processes in sample preparation and repetitive medium exchange in cell culture. In this work, a novel aquatic flower-inspired cell culture platform (AFIP) is presented. AFIP aims to facilitate the experiments on the cell-surface interaction studies, especially the medium exchange process. AFIP was devised to capture and dispense cell culture medium based on interactions between an elastic polymer substrate and a liquid medium. Thus, the medium exchange can be performed easily and without the need of other instruments, such as a vacuum suction and pipette. An appropriate design window of AFIP, based on scaling analysis, was identified to provide a criterion for achieving stability in medium exchange as well as various surface characteristics of the petal substrates. The developed AFIP, with physically engineered petal substrates, was also verified to exchange medium reliably and repeatedly. A closed structure capturing the medium was sustained stably during cell culture experiments. NIH3T3 proliferation results also demonstrated that AFIP can be applied to the cell-surface interaction studies as an alternative to the conventional method.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Flores , Animais , Camundongos , Células NIH 3T3
11.
Biomaterials ; 51: 151-160, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25771006

RESUMO

Micro/nanofabricated surfaces have been widely used for the study of topography-guided migration of cells. While the current studies mostly utilized micro/nanostructures containing sharp edges, internal tissues guiding migration of cells such as blood and lymphatic vessels, bone cavities, perivascular tracks have smooth microscale topographical structures. To overcome these limitations, we fabricated sinusoidal wavy surfaces with various wavelengths by deep X-ray lithography enabling precise and simultaneous control of amplitudes and wavelengths. Using these surfaces, we systematically studied curvature-guided migration of T cells. The majority of T cells migrated along the concave surfaces of sinusoidal wavy structures and as wavelength increased (or curvature decreased), preference to concave surfaces decreased. Integrin-mediated adhesion augmented the tendency of T cells crawling along grooves of highly curved wavy surfaces. To understand mechanisms of curvature-guided migration of T cells, T cells were treated with small molecule drugs such as blebbistatin and CK636, inhibiting myosin II activity and lamellipodia formation, respectively. While lamellipodia-inhibited T cells frequently crossed ridges, myosin II-inhibited T cells were mostly confined within concave surfaces. These results suggest that lamellipodia regulate local actin polymerization in response to surface curvature to maintain T cells within concave surfaces while myosin II-mediated contractile forces push T cells out of concave surfaces to make T cells less sensitive to surface curvature.


Assuntos
Movimento Celular , Linfócitos T/citologia , Animais , Movimento Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/metabolismo , Luz , Camundongos Transgênicos , Poliuretanos/farmacologia , Propriedades de Superfície , Linfócitos T/efeitos dos fármacos , Linfócitos T/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...