Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(21): 38821-38831, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258438

RESUMO

Digital micromirror device (DMD)-based 4f-systems, a type of coherent optical information processing system, have become a powerful tool for optical convolutional neural networks taking advantage of their fast modulation speed and high-resolution capability. However, proper high bit-depth image information processing remains challenging due to the optical diffractions that arise from the binary nature of DMD operation. In this paper, we first characterize the diffraction phenomena that cause irradiance defects, namely the nonlinear grayscale and unintended dark lines. Then to resolve the issues, we propose a DMD operation method and a modified structure of the 4f-system based on blazed diffraction grating theory and numerical calculation of the Rayleigh-Sommerfeld propagation model. As a demonstration, we implement high bit-depth image information processing with an optimized optical 4f-system using DMDs and a collimated coherent light source.

2.
Polymers (Basel) ; 12(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187228

RESUMO

Poly(dimethylsiloxane) (PDMS) has been extensively used as an electroactive polymer material because it exhibits not only excellent moldability but also mechanical properties sufficient enough for electroactive performance despite low dielectric permittivity. Its low dielectric property is due to its molecular non-polarity. Here, we introduce a polar group into a PDMS elastomer by using vinyl acetate (VAc) as a crosslinker to improve the dielectric permittivity. We synthesized a high-molecular weight PDMS copolymer containing vinyl groups, namely poly(dimethylsiloxane-co-methylvinylsiloxane) (VPDMS), and prepared several of the VPDMS solutions in VAc. We obtained transparent PDMS films by UV curing of the solution layers. Electromechanical actuation-related physical properties of one of the UV-cured films were almost equivalent to or superior to those of platinum-catalyzed hydrosilylation-cured PDMS films. In addition, saponification of the UV-cured film significantly improved the electrical and mechanical properties (ɛ' ~ 44.1 pF/m at 10 kHz, E ~ 350 kPa, ɛ ~ 320%). The chemical introduction of VAc into PDMS main chains followed by saponification would offer an efficacious method of enhancing the electroactive properties of PDMS elastomers.

3.
Sci Rep ; 10(1): 16937, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037237

RESUMO

We propose a monolithic focus-tunable lens structure based on the dielectric-elastomer actuator (DEA) technology. In our focus-tunable lens, a soft lens and radial in-plane actuator mimicking the ocular focal-tuning mechanism are constructed in a single body of an optimized dielectric-elastomer film. We provide device fabrication methods including elastomer synthesis, structure formation, and packaging process steps. Performance test measurements show 93% focal tunability and 7 ms response time under static and dynamic electrical driving conditions, respectively. These performance characteristics are substantially enhanced from the previous polylithic DEA tunable lens by a factor 1.4 for the focal tunability and a factor 9.4 for the dynamic tuning-speed limit. Therefore, we obtain greatly enhanced focal tuning control in a remarkably simple and compact device structure.

4.
Polymers (Basel) ; 11(11)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717381

RESUMO

Crosslinked poly(dimethylsiloxane) (PDMS) has been widely used as a dielectric elastomer for electrically driven actuators because it exhibits high elasticity, low initial modulus, and excellent moldability in spite of low dielectric constant. However, further improvement in the characteristics of the PDMS elastomer is not easy due to its chemical non-reactivity. Here, we report a simple method for functionalizing the elastomer by varying content of hydridosilyl groups in PDMS acted as a crosslinker. We synthesized poly(dimethylsiloxane-co-methylvinylsiloxane) (VPDMS) and poly(dimethylsiloxane-co-methylsiloxane) (HPDMS). Tri(ethylene glycol) divinyl ether (TEGDE) as a polar molecule was added to the mixture of VPDMS and HPDMS. TEGDE was reacted to the hydridosilyl group in HPDMS during crosslinking between VPDMS and HPDMS in the presence of platinum as a catalyst. Permittivity of the crosslinked film increased from ca. 25 to 36 pF/m at 10 kHz without a decline in other physical properties such as transparency and elasticity (T > 85%, E ~150 kPa, ɛ ~270%). It depends on the hydridosilyl group content of HPDMS. The chemical introduction of a new molecule into the hydridosilyl group in HPDMS during crosslinking would provide a facile, effective method of modifying the PDMS elastomers.

5.
Sci Rep ; 8(1): 16118, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382147

RESUMO

Optical tactile sensors based on a directional coupler have been widely investigated because of their many advantages. However, one important requirement limits their wide application: the refractive index of the upper superstrate must be equal to or larger than that of the optical waveguide core. To overcome this disadvantage, an optical waveguide tactile sensor using graphene is proposed and its operational feasibility was validated experimentally. The pressure-dependent lateral deformation of the low-index prism-like microstructure on an elastomer superstrate has a key role in optically measuring the mechanical pressure. By mechanically varying the lateral deformation area, the waveguide core-graphene-polydimethylsiloxane (PDMS) interface area was adjusted and the amount of light absorption by graphene became tunable, even when the refractive index of the superstrate was lower than that of the waveguide core. The dynamic response of the sensor was accurately matched to the repeated pressing and release time of the pressure, and exhibited a real-time response to multi-stepped mechanical pressing and releasing using a piezoelectric motor. The proposed graphene-based optical tactile sensor is foundational to the use of a wide range of materials for overcoming the shortcoming of a directional coupler-based optical tactile sensor.

6.
Opt Lett ; 43(16): 3953-3956, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30106929

RESUMO

We propose an elastomer thin-film pressure sensor enabled by pressure-sensitive optical signals through vertical photonic tunnel-junction couplers. We provide the operation principle, design, fabrication, and test results from a 50 µm thick polydimethylsiloxane sheet accommodating embedded vertical photonic tunnel-junction couplers. The result with a 5 mm long device shows a differential optical power change that is ∼140% of the incident power under moderate external pressure of ∼40 kPa, thereby clearly demonstrating a robust pressure-sensing capability realized in a highly flexible, lightweight, transferrable, optically transparent, and bio-compatible thin-film material. Therefore, the proposed approach potentially enables versatile pressure and touch sensors for many applications in practice.

7.
Soft Robot ; 5(6): 777-782, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30156468

RESUMO

Developing tunable lenses, an expansion-based mechanism for dynamic focus adjustment can provide a larger focal length tuning range than a contraction-based mechanism. Here, we develop an expansion-tunable soft lens module using a disk-type dielectric elastomer actuator (DEA) that creates axially symmetric pulling forces on a soft lens. Adopted from a biological accommodation mechanism in human eyes, a soft lens at the annular center of a disk-type DEA pair is efficiently stretched to change the focal length in a highly reliable manner. A soft lens with a diameter of 3 mm shows a 65.7% change in the focal length (14.3-23.7 mm) under a dynamic driving voltage signal control. We confirm a quadratic relation between lens expansion and focal length that leads to large focal length tunability obtainable in the proposed approach. The fabricated tunable lens module can be used for soft, lightweight, and compact vision components in robots, drones, vehicles, and so on.

8.
IEEE Trans Haptics ; 11(1): 15-21, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29611809

RESUMO

This paper reports soft actuator based tactile stimulation interfaces applicable to wearable devices. The soft actuator is prepared by multi-layered accumulation of thin electro-active polymer (EAP) films. The multi-layered actuator is designed to produce electrically-induced convex protrusive deformation, which can be dynamically programmable for wide range of tactile stimuli. The maximum vertical protrusion is and the output force is up to 255 mN. The soft actuators are embedded into the fingertip part of a glove and front part of a forearm band, respectively. We have conducted two kinds of experiments with 15 subjects. Perceived magnitudes of actuator's protrusion and vibrotactile intensity were measured with frequency of 1 Hz and 191 Hz, respectively. Analysis of the user tests shows participants perceive variation of protrusion height at the finger pad and modulation of vibration intensity through the proposed soft actuator based tactile interface.


Assuntos
Sistemas Homem-Máquina , Tato , Interface Usuário-Computador , Dispositivos Eletrônicos Vestíveis , Desenho de Equipamento , Retroalimentação Sensorial , Dedos , Humanos , Estimulação Física , Polímeros , Percepção do Tato , Vibração
9.
Opt Express ; 25(20): 23801-23808, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-29041330

RESUMO

We propose and demonstrate an all-solid-state tunable binary phase Fresnel lens with electrically controllable focal length. The lens is composed of a binary phase Fresnel zone plate, a circular acrylic frame, and a dielectric elastomer (DE) actuator which is made of a thin DE layer and two compliant electrodes using silver nanowires. Under electric potential, the actuator produces in-plane deformation in a radial direction that can compress the Fresnel zones. The electrically-induced deformation compresses the Fresnel zones to be contracted as high as 9.1% and changes the focal length, getting shorter from 20.0 cm to 14.5 cm. The measured change in the focal length of the fabricated lens is consistent with the result estimated from numerical simulation.

10.
Sci Rep ; 7: 45659, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28368021

RESUMO

Core/shell (C/S)-structured upconversion nanophosphor (UCNP)-incorporated polymer waveguide-based flexible transparent displays are demonstrated. Bright green- and blue-emitting Li(Gd,Y)F4:Yb,Er and Li(Gd,Y)F4:Yb,Tm UCNPs are synthesized via solution chemical route. Their upconversion luminescence (UCL) intensities are enhanced by the formation of C/S structure with LiYF4 shell. The Li(Gd,Y)F4:Yb,Er/LiYF4 and Li(Gd,Y)F4:Yb,Tm/LiYF4 C/S UCNPs exhibit 3.3 and 2.0 times higher UCL intensities than core counterparts, respectively. In addition, NaGdF4:Yb,Tm/NaGdF4:Eu C/S UCNPs are synthesized and they show red emission via energy transfer and migration of Yb3+ → Tm3+ → Gd3+ → Eu3+. The C/S UCNPs are incorporated into bisphenol A ethoxylate diacrylate which is used as a core material of polymer waveguides. The fabricated stripe-type polymer waveguides are highly flexible and transparent (transmittance > 90% in spectral range of 443-900 nm). The polymer waveguides exhibit bright blue, green, and red luminescence, depending on the incorporated UCNPs into the polymer core, under coupling with a near infrared (NIR) laser. Moreover, patterned polymer waveguide-based display devices are fabricated by reactive ion etching process and they realize bright blue-, green-, and red-colored characters under coupling with an NIR laser.

11.
Opt Express ; 24(1): 55-66, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26832237

RESUMO

We suggest a way to electrostatically control deformed geometry of an electrostatic deformable mirror (EDM) based on geometric modulation of a basement. The EDM is composed of a metal coated elastomeric membrane (active mirror) and a polymeric basement with electrode (ground). When an electrical voltage is applied across the components, the active mirror deforms toward the stationary basement responding to electrostatic attraction force in an air gap. Since the differentiated gap distance can induce change in electrostatic force distribution between the active mirror and the basement, the EDMs are capable of controlling deformed geometry of the active mirror with different basement structures (concave, flat, and protrusive). The modulation of the deformed geometry leads to significant change in the range of the focal length of the EDMs. Even under dynamic operations, the EDM shows fairly consistent and large deformation enough to change focal length in a wide frequency range (1~175 Hz). The geometric modulation of the active mirror with dynamic focus tunability can allow the EDM to be an active mirror lens for optical zoom devices as well as an optical component controlling field of view.

12.
Opt Express ; 22(19): 23433-8, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25321812

RESUMO

This paper reports thin, transparent, and soft displays based on polymer waveguides that are compliant with curvilinear interfaces. In order to prove a feasibility of optical waveguide for a flexible display, we suggest the waveguide fabricated by a multi-step lithography process using two photo-curable pre-polymers with different refractive index. The displays are composed of light sources, polymer waveguides, and scatter patterns. The light signal propagating through the waveguides forms images of the scatter patterns by deflecting the light signals to outer surface. The scatter patterns are configured to a seven-segment. The seven-segment design with a switching methodology of the light sources contributes to selectively representing all decimal numbers from 0 to 9 by combination of activated segments. For a large area display based on the proposed methodology, a single light source interconnected to multi-waveguide section is integrated with a QWERTY key pad design. The display shows high transparency and flexibility without visual distortion.


Assuntos
Luz , Óptica e Fotônica , Polímeros/química , Refratometria/instrumentação , Desenho de Equipamento
13.
Adv Mater ; 26(26): 4474-80, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24711161

RESUMO

A polymer-waveguide-based transparent and flexible force sensor array is proposed, which satisfies the principal requirements for a tactile sensor working on curvilinear surfaces, such as thinfilm architecture (thickness < 150 µm), localized force sensing (ca. 0-3 N), multiple-point re cognition (27 points), bending robustness (10.8% degradation at R = 1.5 mm), and fast response (bandwidth > 16 Hz).

14.
Opt Express ; 20(13): 14486-93, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22714510

RESUMO

This paper suggests a force sensor array measuring contact force based on intensity change of light transmitted throughout optical waveguide. For transparency and flexibility of the sensor, two soft prepolymers with different refractive index have been developed. The optical waveguide consists of two cladding layers and a core layer. The top cladding layer is designed to allow light scattering at the specific area in response to finger contact. The force sensor shows a distinct tendency that output intensity decreases with input force and measurement range is from 0 to -13.2 dB.


Assuntos
Polímeros/química , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Transdutores de Pressão , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Estresse Mecânico
15.
Opt Express ; 20(9): 10438-45, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22535134

RESUMO

For development of electro-optical printed circuit board (PCB) systems, PCB-compatible metal-slotted hybrid optical waveguide was proposed and its optical characteristics are investigated at a wavelength of 1.31 µm. To confine light in a metallic multilayered structure, a metal film with a wide trench is inserted at the center of a dielectric medium that is sandwiched between metal films of infinite width. A circularly symmetric spot of the guided mode was measured at the center of the metal-slotted optical waveguide, which is a good agreement with the theoretical prediction by using the finite-element method. The measured propagation loss is about 1.5 dB/cm. Successful transmission of 2.5 Gbps optical signal without any distortion of the eye diagram confirms that the proposed hybrid optical waveguide holds a potential transmission line for the PCB-compatible optical interconnection.


Assuntos
Eletrônica/instrumentação , Metais/química , Dispositivos Ópticos , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
16.
Opt Express ; 18(23): 24213-20, 2010 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21164767

RESUMO

The bending loss characteristics of the hybrid plasmonic waveguide are investigated theoretically and experimentally. Simulation results showed that the guided mode is confined mainly into outer high index slab as the bending radius decreases. Thus, the radiation loss due to bending is greatly suppressed. We fabricate flexible hybrid plasmonic waveguide consisted of 5 nm-thick Au stripe and flexible multiple polymer cladding layers. The measured bending loss is lower than 1 dB/180° at a wavelength of 1310 nm for the bending radii down to 2 mm.

17.
Opt Express ; 18(3): 2808-13, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20174109

RESUMO

A hybrid plasmonic waveguide structure is proposed and fabricated for low-loss lightwave guiding along a metal stripe core. By embedding Au stripe in dual slab waveguides with high refractive-index contrast, the field of the guided mode is confined more in the two dielectric core layers. Thus, the propagation loss is significantly reduced. The guided mode is like a combination of a fundamental long-range surface plasmon polariton strip mode and a dual symmetric dielectric slab mode. We fabricate 5 nm-thick Au stripe optical waveguides and measure the optical properties at a wavelength of 1.31 microm. The propagation loss is less than 1.0 dB/cm with the metal stripe width of 1-5 microm.

18.
Opt Express ; 17(1): 228-34, 2009 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-19129892

RESUMO

Very low vertical bending loss is demonstrated in a flexible metal waveguide. The waveguide consists of an 8 nm-thick and 68 mm-long Ag strip embedded in a free-standing multilayered low-loss polymer film. The polymer film is composed of a 10 microm-thick inner cladding with a refractive index of 1.524, and a pair of 20 microm-thick outer claddings which both have a refractive index of 1.514, resulting in a total thickness of 50 microm. The measured vertical bending loss is lower than 0.3 dB/180 masculine at a wavelength of 1310 nm for the bending radii down to 2 mm.


Assuntos
Metais/química , Polímeros/química , Refratometria/métodos , Desenho de Equipamento , Luz , Membranas Artificiais , Modelos Moleculares , Conformação Molecular , Dispositivos Ópticos , Óptica e Fotônica , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/métodos
19.
Opt Express ; 17(2): 697-702, 2009 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-19158883

RESUMO

We demonstrate sub-dB/cm propagation losses in polymer-based silver stripe waveguides at the wavelength of 1.31 microm. The silver stripe waveguides were fabricated in a low-loss fluorinated polymer clad. To form uniform metal stripe patterns, which are essential for reducing propagation loss, we developed a lift-off process using double layers of photoresist and SiNx. A propagation loss of less than 1.0 dB/cm was obtained with the 11- nm-thick silver stripes in the width range of 1.5 - 4.5 microm. A coupling loss of approximately 1.0 dB with a polarization maintaining single mode fiber was achieved for a width of 4.5 microm. For a width of 2.0 microm, we recorded a minimum propagation loss of 0.4 dB/cm, which is comparable with that of dielectric multi-mode waveguides.

20.
Opt Express ; 16(17): 13133-8, 2008 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-18711551

RESUMO

We demonstrate a novel on-board chip-to-chip optical interconnect using long-range surface plasmon polariton (LR-SPP) waveguides that feature 2.5-cm-long gold strips embedded in a low loss polymer cladding. A TM-mode vertical-cavity surface-emitting laser (VCSEL) operating at a wavelength of 1.3 microm was butt-coupled into the waveguides in order to excite a fundamental LR-SPP mode and then the transmitted light was received with a photo-diode (PD). The waveguide width is varied in the range of 1.5-5.0 microm in order to optimize the insertion loss where the 3-microm-wide waveguide provides a minimum insertion loss of -17 dB, consisting of 6 dB/cm propagation loss and 2 dB coupling loss. An interconnect system based on the optimized waveguide with a 4-channel array is assembled with the arrayed optoelectronic chips. It shows the feasibility of 10 Gbps (2.5 Gbps x 4 channels) signal transmission indicating that the LR-SPP waveguide is a potential transmission line for optical interconnection.


Assuntos
Ouro/química , Óptica e Fotônica/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...