Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(10): 7402-7410, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38411049

RESUMO

In this research, we designed a stepwise synthetic method for Au@Pt hexapods where six elongated Au pods are arranged in a pairwise perpendicular fashion, sharing a common point (the central origin in a Cartesian-coordinate-like hexapod shape), featured with tip-selectively decorated Pt square nanoplates. Au@Pt hexapods were successfully synthesized by applying three distinctive chemical reactions in a stepwise manner. The Pt adatoms formed discontinuous thin nanoplates that selectively covered six concave facets of a Au truncated octahedron and served as etching masks in the succeeding etching process, which prevented underlying Au atoms from being oxidized. The subsequent isotropic etching proceeded radially, starting from the bare Au surface, carving the central nanocrystal in a concave manner. By controlling the etching conditions, Au@Pt hexapods were successfully fabricated, wherein the core Au domain is connected to six protruding arms, which hold Pt nanoplates at the ends. Due to their morphology, Au@Pt hexapods feature distinctive optical properties in the near-infrared region, as a proof of concept, allowing for surface-enhanced Raman spectroscopy (SERS)-based monitoring of in situ CO electrooxidation. We further extended our synthetic library by tailoring the size of the Pt nanoplates and neck widths of Au branches, demonstrating the validity of selective blocking and etching-based colloidal synthesis.

2.
Nano Lett ; 24(4): 1074-1080, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38236762

RESUMO

Herein, we present a synthetic approach to fabricate Au nanoheptamers composed of six individual Au nanospheres interconnected through thin metal bridges arranged in an octahedral configuration. The resulting structures envelop central Au nanospheres, producing Au nanosphere heptamers with an open architectural arrangement. Importantly, the initial Pt coating of the Au nanospheres is a crucial step for protecting the inner Au nanospheres during multiple reactions. As-synthesized Au nanoheptamers exhibit multiple hot spots formed by nanogaps between nanospheres, resulting in strong electromagnetic near-fields. Additionally, we conducted surface-enhanced Raman-scattering-based detection of a chemical warfare agent simulant in the gas phase and achieved a limit of detection of 100 ppb, which is 3 orders lower than that achieved using Au nanospheres and Au nanohexamers. This pseudocore-shell nanostructure represents a significant advancement in the realm of complex nanoparticle synthesis, moving the field one step closer to sophisticated nanoparticle engineering.

3.
Nano Lett ; 23(15): 6831-6838, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37083287

RESUMO

A synthesis method for plasmonic double-walled nanoframes was developed, where single-walled truncated octahedral nanoframes with (111) open facets and (100) solid flat planes are nested in a core-shell manner. By applying multiple chemical toolkits to Au cuboctahedrons as a starting template, Au double-walled nanoframes with controllable face-to-face nanogaps were successfully synthesized in high homogeneity in size and shape. Importantly, when the gap distance between inner and outer flat walled frames became closer, augmentation of electromagnetic near-field focusing was achieved, leading to generation of hot-zones, which was verified by surface-enhanced Raman spectroscopy. The unique optical property of Au double-walled nanoframes with high structural intricacy was carefully investigated and the SERS substrates comprising Au double-walled nanoframes with the narrowest nanogaps exhibited much improved near-field enhancement toward strongly and/or weakly adsorbing analytes, allowing for gas phase detection in chemical warfare agents, which is a huge challenge in early warning systems.

4.
Nanoscale Horiz ; 8(2): 185-194, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36606451

RESUMO

Here, we report a highly sensitive and reliable surface enhanced Raman scattering (SERS)-based immunoassay using bimetallic alloy Ag@Au hollow dual-rim nanorings (DRNs) where two hollow nanorings with different diameters are concentrically overlapped and connected by thin metal ligaments, forming circular hot-zones in the intra-nanogaps between the inner and outer rims. Pt DRNs were first prepared, and then Ag was deposited on the surface of the Pt skeleton, followed by Au coating, resulting in alloy Ag@Au hollow DRNs. The chemical stability of Au and the high optical properties of Ag are incorporated into a single entity, Ag@Au hollow DRNs, enabling strong single-particle SERS activity and biocompatibility through surface modification with thiol-containing functionalities. When Ag@Au hollow DRNs were utilized as nanoprobes for detecting human chorionic gonadotropin (HCG) hormone through a SERS-based immunoassay, a very low limit of detection of 10 pM with high reliability was achieved, strongly indicating their advantage as ultrasensitive SERS nanoprobes.

5.
Acc Chem Res ; 56(3): 270-283, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36693060

RESUMO

ConspectusRational design of nanocrystals with high controllability via wet chemistry is of critical importance in all areas of nanoscience and nanotechnology research. Specifically, morphologically complex plasmonic nanoparticles have received considerable attention because light-matter interactions are strongly associated with the size and shape of nanoparticles. Among many types of nanostructures, plasmonic nanoframes (NFs) with controllable structural intricacy could be excellent candidates as strong light-entrappers with inner voids as well as high surface area, leading to highly effective interaction with light and analytes compared to their solid counterparts. However, so far studies on single-rim-based NFs have suffered from insufficient near-field focusing capability due to their structural simplicity (e.g., a single rim or NF molded from simple platonic solids), which necessitates a conceptually new NF architecture. If one considers a stereoscopic nanostructure with dual, triple, and multiple resonant intra-nanogaps on each crystallographic facet of nanocrystals, unprecedented physicochemical properties could be expected. Realizing such complex multiple NFs with intraparticle surface plasmon coupling via localized surface plasmon resonance is very challenging due to the lack of synthetic strategic principles with systematic structural control, all of which require a deep understanding of surface chemistry. Moreover, realizing those complex architectures with high homogeneity in size and shape via a bottom-up method where diverse particle interactions are involved is more challenging. Although there have been several reports on NFs used for catalysis, techniques for production of structurally complex NFs with high uniformity and an understanding of the correlation between such complexity in a single plasmonic entity and electromagnetic near-field focusing have remained highly elusive.In this Account, we will summarize and highlight the rational synthetic pathways for the design of complex two-dimensional (2D) and three-dimensional (3D) NFs with unique inner rim structures and characterize their optical properties. This systematic strategy is based on publications from our group during the last 10 years. First, we will introduce a chemical step of shape transformation of triangular Au nanoplates to circular and hexagonal plates, which are used as sacrificial layers for the formation of NFs. Then, we will describe the methods on how to synthesize monorim-based plasmonic NFs using Pt scaffolds with different shapes and correlate with their electromagnetic near-field. Then, we will describe a multiple stepwise synthetic method for the formation of 2D complex NFs wherein different starting Au nanocrystals evolved from systematic shape transformation are used to produce circular, triangular, hexagonal, crescent, and Y-shaped inner hot zones. Then, we will discuss how one can synthesize NFs with multiple rims wherein rims with different diameters are concentrically connected, by exploiting chemical toolkits such as eccentric and concentric growth of Au, borrowing the concept of total synthesis that is frequently adopted in organic chemistry. We then introduce dual-rim-faceted NFs and frame-in-frame 3D matryoshka NF geometries via well-faceted growth of Au with high control of intra-nanogaps. Finally, and importantly, we will provide examples of more advanced hierarchical NF architectures produced by controlling geometrical shapes of nanoparticles, number of rims, and different components, leading to the expansion of the NF library.

6.
ACS Nano ; 16(12): 21283-21292, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36473157

RESUMO

In this paper, we demonstrate the synthesis of morphologically complex nanoframes wherein a mixture of frames and thin solid planes, which we refer to as walled-nanoframes, are present in a single particle. By applying multiple chemical steps including shape evolution of Au nanocrystals and controlling chemical potential of solution for selective deposition, we successfully designed a variety of Pt nanoframes including Pt cuboctahedral nanoframes and Pt single-walled nanoframes. The rationale for on-demand chemical steps with well-faceted Au overgrowth allowed for the synthesis of double-walled nanoframes where two Pt single-walled nanoframes are concentrically overlapped in a single entity with a clearly discernible gap between the two nanoframes. Given the coexistence of an open structure of nanoframe and thin plates within one entity, the double-walled nanoframes showed a dramatic increase in catalytic activity toward the methanol oxidation reaction, acting as high-surface area, carbon-free, and volume-compact nanocatalysts.

7.
Nat Commun ; 13(1): 4813, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974015

RESUMO

Three-dimensional (3D) nanoframe structures are very appealing because their inner voids and ridges interact efficiently with light and analytes, allowing for effective optical-based sensing. However, the realization of complex nanoframe architecture with high yield is challenging because the systematic design of such a complicated nanostructure lacks an appropriate synthesis protocol. Here, we show the synthesis method for complex 3D nanoframes wherein two-dimensional (2D) dual-rim nanostructures are engraved on each facet of octahedral nanoframes. The synthetic scheme proceeds through multiple executable on-demand steps. With Au octahedral nanoparticles as a sacrificial template, sequential processes of edge-selective Pt deposition and inner Au etching lead to Pt octahedral mono-rim nanoframes. Then, adlayers of Au are grown on Pt skeletons via the Frank-van der Merwe mode, forming sharp and well-developed edges. Next, Pt selective deposition on both the inner and outer boundaries leads to tunable geometric patterning on Au. Finally, after the selective etching of Au, Pt octahedral dual-rim nanoframes with highly homogeneous size and shape are achieved. In order to endow plasmonic features, Au is coated around Pt frames while retaining their geometric shape. The resultant plasmonic dual-rim engraved nanoframes possess strong light entrapping capability verified by single-particle surface-enhanced Raman scattering (SERS) and show the potential of nanoprobes for biosensing through SERS-based immunoassay.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro/química , Imunoensaio , Nanopartículas Metálicas/química , Nanoestruturas/química , Análise Espectral Raman/métodos
8.
ACS Nano ; 16(7): 11259-11267, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35834780

RESUMO

We report a synthetic approach for heterometallic (Au-Pt-Au) nanorings with intertwined triple rings (NITs), wherein three differently sized metal circular nanorings concentrically overlap in a single entity. The synthetic method allows one to control the component of core nanorings (Au or Pt) with a tunable gap distance. The narrow circular nanogaps between inner and outer Au rings strongly enhance the electromagnetic near-field via intraparticle coupling of localized surface plasmon resonance, which realizes surface-enhanced Raman scattering (SERS) at the single-particle level. Importantly, when the component of the middle ring is Pt, in situ SERS measurement for electrochemical reactions on Pt domains could be monitored with electrochemical potential variations due to the near-field focusing that is assisted by plasmonically active inner and outer Au nanorings, which is not feasible with pure Pt nanoparticle systems. The resulting NIT systems are robust and may benefit the synthesis of complicated nanostructures, giving myriad applications.

9.
J Am Chem Soc ; 144(29): 13285-13293, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35839479

RESUMO

Here we report a synthetic pathway toward Au truncated octahedral dual-rim nanoframes wherein two functional facets are formed including (1) eight hot nanogaps formed by hexagonal nanoframes embracing core circular nanorings for near-field focusing and (2) six flat squares that facilitate the formation of well-ordered arrays of nanoframes through self-assembly. The existence of intra-nanogaps in a single entity enables strong electromagnetic near-field focusing, allowing single-particle surface-enhanced Raman spectroscopy. Then, we built "all-hot-spot bulk SERS substrates" with those entities, wherein the presence of truncated terraces with high homogeneity in size and shape facilitate spontaneous self-assembly into a highly ordered and uniform superlattice, exhibiting a limit of detection of attomolar concentrations toward 2-naphthalenethiol, which is 6 orders lower than that of monorim counterparts. The observed low limit of detection originates from the combined synergic effect from both inter- and intraparticle coupling in a superlattice, which we dubbed "all-hot-spot bulk SERS substrates".


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Ouro/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos
10.
ACS Nano ; 16(6): 9214-9221, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35446559

RESUMO

We report the synthesis of all-frame-faceted octahedral nanoframes containing eight Y-shaped hot zones in a single entity where electromagnetic near-field focusing can be maximized. To realize such state-of-the-art complex nanoframes, a series of multiple stepwise bottom-up processes were executed by exploiting Au octahedral nanoparticles as the initial template. By rationally controlling the chemical reactivity of different surface facets (i.e., vertexes, edges, and terraces), the Au octahedral nanoparticles went through controlled shape transformations, leading to Au-engraved nanoparticles wherein 24 edges wrap the octahedral Au nanoparticle core. Those edges were then selectively decorated with Pt, leading to the formation of eight Pt tripods in a single entity. After etching the central Au, 3D Pt tripod frame-faceted octahedral nanoframes were achieved with high integrity. By harnessing the obtained Pt nanoframes as a scaffold, AuAg alloy-based plasmonic all-frame-faceted nanoframes were obtained after the co-reduction of Ag and Au, which generated multiple hot zones within multiple surface intra-nanogaps, creating a single-particle, surface-enhanced Raman spectroscopy enhancer platform.

11.
Nano Lett ; 22(4): 1734-1740, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138110

RESUMO

The development of a stepwise synthetic strategy for Au ring-in-a-triangle nanoframes with a high degree of structural solidity is essential to the advancement of highly amplified near-field focusing. This strategy leads to the formation of an inscribed nanoring in a triangular metal frame with stability to withstand elevated temperatures and an oxidizing environment, which is critical for successful single-particle surface-enhanced Raman scattering (SERS). The existence of inscribed nanorings plays an important role in enhancing the so-called "lightning rod effect," whereby the electromagnetic near-field enhancement occurs on the highly curved curvature of a metallic interface. We evaluated the corresponding single-particle SERS as a function of the thickness of the rims and then constructed two-dimensional (2D) bulk SERS substrates, wherein an ensemble of hotspots exists. The synergic contribution from both inter- and intrahotspots allowed the outstanding linearity of the calibration curve and the lowest limit of detection, ∼10-18 M for the analyte concentration.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...