Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 11: 287, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736738

RESUMO

Neuroinflammation is important in the pathogenesis and development of Alzheimer's disease (AD). In the AD brain, microglial activation and upregulation of pro-inflammatory mediators both induce amyloid beta (Aß) accumulation. Regulatory T cells (Tregs) and nuclear factor-kappa B (NF-κB) signaling have been implicated in AD development through their effects on neuroinflammation and microglial activation. The bee venom soluble phospholipase A2 (bv-sPLA2) enzyme is known to exert anti-inflammatory and anti-immune effects. Here, we investigated the inhibitory effects of bv-sPLA2 on memory deficiency in a lipopolysaccharide (LPS)-induced mouse model of AD. We examined whether bv-sPLA2 (0.02, 0.2, and 2 mg/kg by i.p. injection three times for 1 week) could inhibit neuroinflammation and memory impairment in LPS-treated mice (250 µg/kg by i.p. injection daily for 1 week). We also assessed the effects of bv-sPLA2 administration (0.01, 0.1, and 1 µg/ml) on LPS (1 µg/ml)-treated microglial BV-2 cells. In the LPS-injected mouse brain, sPLA2 treatment rescued memory dysfunction and decreased Aß levels, through the downregulation of amyloidogenic proteins, and decreased the expression of inflammatory proteins and pro-inflammatory cytokines. Moreover, the LPS-mediated increase in inflammatory protein expression was attenuated bv-sPLA2 treatment in BV-2 cells. Treatment with bv-sPLA2 also downregulated signaling by NF-κB, which is considered to be an important factor in the regulation of neuroinflammatory and amyloidogenic responses, both in vivo and in vitro. Additionally, co-treatment with NF-κB (5 µM) and bv-sPLA2 (0.1 µg/ml) exerted more marked anti-inflammatory effects, compared to bv-sPLA2 treatment alone. These results indicate that bv-sPLA2 inhibits LPS-induced neuroinflammation and amyloidogenesis via inhibition of NF-κB.

2.
J Pharmacol Sci ; 92(3): 218-27, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12890887

RESUMO

This study was designed to characterize vasorelaxant effects of BMS-180448 ((3S-trans)-N-(4-chlorophenyl)-N'-cyano-N"-(6-cyano-3,4-dihydro-3-hydroxy-2,2-dimethyl-2H-1-benzopyran-4-yl)), a prototype cardioselective ATP-sensitive potassium channel opener, in rat aorta. BMS-180448 relaxed phenylephrine-precontracted endothelium-intact aortic rings (IC(50): 0.97 +/- 0.29 micro M), the effect being significantly attenuated by removal of functional endothelium (IC(50): 1.95 +/- 0.23 micro M) and pretreatment with N(G)-nitro-L-arginine methyl ester (L-NAME) or methylene blue. BMS-180448 completely relaxed endothelium-denuded aorta contracted with phorbol 12,13-dibutyrate, PGF(2)(alpha), and U46619 with a significantly greater potency (IC(50): 0.069 +/- 0.002, 0.055 +/- 0.002, and 0.068 +/- 0.008 micro M, respectively, P<0.05) than that contracted with phenylephrine (1.95 +/- 0.23 micro M) or KCl (0.25 +/- 0.08 micro M), indicating potency change with the type of vasoconstrictor. BMS-180448 (1 - 3 micro M) inhibited Ca(2+) (0.5 - 2.5 mM)-induced contraction of endothelium-denuded aorta evoked in the presence of high KCl (65.4 mM), but had no effect on contraction induced by phenylephrine in Ca(2+)-free buffer. BMS-180448 (10 micro M) increased cAMP level in aorta by approximately two-fold compared with the control, comparable to forskolin, an adenylate cyclase activator. These findings suggest that cardioselective BMS-180448 still exerts significant vasorelaxant activity in rat aorta contracted with various vasoconstrictors via multiple mechanisms including the blockade of extracellular Ca(2+) influx through voltage-dependent channels and activation of the adenylate cyclase and nitric oxide pathway, with the possibility of hemodynamic implications in certain clinical conditions such as myocardial infarction and hypertension.


Assuntos
Trifosfato de Adenosina/fisiologia , Aorta Torácica/efeitos dos fármacos , Benzopiranos/farmacologia , Guanidinas/farmacologia , Canais de Potássio/fisiologia , Vasodilatação/efeitos dos fármacos , Animais , Aorta Torácica/fisiologia , Relação Dose-Resposta a Droga , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Masculino , Canais de Potássio/agonistas , Ratos , Ratos Sprague-Dawley , Vasodilatação/fisiologia , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...