Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(27): 32629-32636, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37341538

RESUMO

In this study, we examined how the regioregularity of poly(3-hexylthiophene) (P3HT) affects molecular packing, free volume, charge transport, and gas sensing properties. Our results showed that the presence of regular alkyl side chains on the polymer backbone promoted a high degree of structural order in regioregular P3HT molecules, leading to a compact packing density and reduced free volume. Consequently, it was more challenging for NO2 molecules to interact with the hole charge carriers in the conductive channel. On the other hand, the regiorandom P3HT films displayed a larger free volume, attributed to the irregular side chains, which facilitated the gas-analyte interaction while impeding efficient charge transport. Thus, these films exhibited greater sensitivity to analyte gas molecules. The molecular order, packing density, and hardness of P3HT films were confirmed through the use of multiple techniques, including UV-vis spectroscopy, atomic force microscopy, and grazing-incidence X-ray diffraction. Additionally, the regiorandom P3HT films showed enhanced mechanical flexibility compared to the regioregular films. In conclusion, our findings emphasize that the regularity of polymer molecules plays a significant role in determining the charge carrier transport and gas adsorption characteristics.

2.
ACS Appl Mater Interfaces ; 15(5): 7196-7203, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36695727

RESUMO

For next-generation gas sensors, conductive polymers have strong potential for overcoming the existing deficiencies of conventional inorganic sensors based on metallic oxides. However, the signal of organic gas sensors is inferior to that of inorganic metal oxide gas sensors because of organic gas sensors' poor charge carrier transport. Herein, the combination of an organic transistor-type gas sensor and a zeolite with strong gas-adsorbing properties is proposed and experimentally demonstrated. Among the various investigated zeolites, ZSM-5 with ∼5.5 Špore openings enhanced the adsorption for small gas molecules when combined with a polymer active layer, where it provided a pathway for gas molecules to penetrate the zeolite channels. Moreover, nitrided ZSM-5 (N-ZSM-5) enhanced the sensing performance of NO2 molecules selectively because N in the N-ZSM-5 framework strongly interacted with NO2 molecules. These results open the possibility for zeolite-modified organic gas sensors that selectively adsorb target gas molecules via heteroatoms substituted into the zeolite framework.

3.
ACS Appl Mater Interfaces ; 14(8): 10637-10647, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175723

RESUMO

Because of their high porosity, metal-organic framework (MOF) materials have attracted much attention for use in gas-sensing applications. However, problems with the processability of MOFs for use in reliable gas-sensing electronics remain unsolved. Herein, combination of the strong gas-adsorbing properties of MOF nanomaterials and organic thin-film transistor-type chemical sensors is proposed and experimentally demonstrated. The hybrid blend system with inorganic MOF nanomaterials and organic semiconductors likely exhibits thermodynamic instability because of each phase's self-aggregation, which is difficult to settle without surface functionalization. We propose a novel method to produce an inorganic-organic hybrid sensor by introducing carbon nanofibers as a scaffold. We demonstrate that the carbon nanofibers perform dual functions: enabling the attachment of MOF nanoparticles at the fiber surface, which stabilizes the nanoparticle-embedded polymer layer, and maintaining reliable conductivity for improved gas-sensing performance. On the basis of our characterization of their nanomorphology and nanocrystal structure, the MOF nanoparticles and carbon nanofibers are shown to render a hybrid core-shell structure in the conjugated polymer matrix. This organic-inorganic hybrid system was incorporated into a field-effect transistor device to detect hazardous NO2 gas analytes, operating in real-time with high responsivity. The prototype chemical sensor holds enormous promise for other chemical sensors.

4.
ACS Appl Mater Interfaces ; 13(47): 56385-56393, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34796709

RESUMO

Here, we designed and developed an organic field-effect transistor (OFET)-based gas sensor by applying solvatochromic dye (Nile red, NR) with twisted intramolecular charge-transfer (TICT) behavior depending on the polarity of the surrounding molecules, as an auxiliary NR sensing medium (aNR-SM). As a polar molecule approaches, intra-charge transfers from the donor diethylamine group to the ketone group occur in the NR molecule, resulting in the twisting of the donor functional group and thereby increasing its dipole moment. Using this characteristic, NR was applied as an auxiliary sensing medium to the OFET for detecting ammonia (NH3), a representative toxic gas. The Top-NR case, where the aNR-SM covers only the top of the organic semiconductor layer, showed the best gas sensing performance, and its response and recovery rates were improved by 46 and 94%, respectively, compared to the pristine case. More importantly, a sensitivity of 0.87 ± 0.045 ppm-1 % was measured, having almost perfect linearity (0.999) over the range of measured NH3 concentrations, which is the result of solving the saturation problem in the sensing characteristics of the OFET-based gas sensor. Our result not only improved the sensing performance of the OFET-based sensor but also made an important advance in that the reliability of the sensing performance was easily secured by applying solvatochromic and TICT behaviors of an auxiliary sensing medium.

5.
ACS Appl Mater Interfaces ; 13(19): 22475-22484, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33945251

RESUMO

Ni-rich layered oxide with high reversible capacity, low manufacturing cost, and high potential is recognized as the best practical cathode material for high energy density lithium-ion batteries for affordable electric vehicles. However, they suffer from a poor cycle life owing to internal microcracks, which have been perceived to be due to anisotropic volume changes. Herein, the failure mechanism as well as improved cycle life is demonstrated by a self-assembled molecular monolayer (SAM) on Ni-rich layered oxide powder with a gas-phase precursor of octyltrichlorosilane (OTS), enabling mass-scalable manufacturing. The SAM process with a low heating temperature of 130 °C compared to the commonly used coating is also suitable to the chemically fragile Ni-rich layered oxide. Also, a homogeneous angstrom-level OTS coating is beneficial for preserving the energy density of batteries. In particular, OTS, with electrolyte-phobic functionality, is very effective for mitigating the inherent microcrack failure of the particles by reducing the internal electrolyte decomposition by controlling electrolyte wetting into secondary particles. Systematic surface analyses of the cross section of Ni-rich electrode with the OTS coating found greatly improved particle stability after 100 cycles in comparison with pristine material.

6.
ACS Appl Mater Interfaces ; 13(20): 24005-24012, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33999613

RESUMO

Air pollution sensors based on organic transistors have attracted much interest recently; however, the devices suffer from low responsivity and slow response and recovery rates for gas analytes. These shortcomings are attributed to the low charge-carrier mobility of organic semiconductors and to a structural limitation resulting from the use of a thick and continuous active layer. In the present work, we investigated the material properties of a multiscale porous zeolitic imidazolate framework, [Zn(2-methylimidazole)2]n (ZIF-8), and examined its potential as an analyte channel material inserted at an organic-transistor active layer. A series of carbonized zeolitic imidazolate frameworks (ZIFs) were prepared by thermal conversion of ZIF-8 and also studied for comparison. The microstructures, morphologies, and optical/electrical characteristics of polythiophene/ZIF-8 hybrid films were systematically investigated. Organic-transistor-type nitrogen dioxide sensors based on the polythiophene/ZIF-8 hybrid films showed substantially improved sensing properties, including responsivity, response rate, and recovery rate. The electrical conductivity of the carbonized ZIF-8s enhanced the field-effect mobility of the organic transistors; however, the sensing performance was not improved, because of the closed pore structures resulting from the carbonization. These results provide invaluable information and useful insights into the design of transistor-type gas sensors based on organic semiconductor/metal-organic framework hybrid films.

7.
RSC Adv ; 10(56): 34130-34136, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35519062

RESUMO

Ensuring high performance in polymer devices requires conjugated polymers with interchain π-π stacking interactions via van der Waals forces, which can induce structural changes in the polymer thin film. Here, we present a systematic study of using simple localized UV irradiation to overcome the low crystallinity and poor charge carrier transport in dip-coated poly(3-hexylthiophene) (P3HT) thin films, which are consequences of the limited selection of solvents compatible with the dip-coating process. UV irradiation for only a few minutes effectively promoted P3HT chain self-assembly and association in the solution state. Brief UV irradiation of a P3HT solution led to well-ordered molecular structures in the resultant P3HT films dip-coated using a low boiling point solvent with rapid solvent evaporation. In addition, the position at which UV light was irradiated on the dip-coating solutions was varied, and the effects of the irradiation position and time on the crystallinity and electrical properties of the resultant P3HT thin films were investigated.

8.
Soft Matter ; 15(37): 7369-7373, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31468035

RESUMO

Solution processing is one of the most important techniques for producing large-area, uniform films for printed electronics via a low-cost process. Herein, we propose a time-controlled spin-coating method to improve the crystallinity of films of the solution-processable organic small-molecule semiconductor 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene). A key factor in this process was to halt spinning before drying had begun. We used microscopic and spectroscopic analyses to systematically investigate the effect of spinning time on the evaporation rate of solvent at different spinning rates. We found that the crystallinity of the TIPS-pentacene thin films was substantially enhanced when the spinning time was limited to a few seconds, without post-treatment. We fabricated field-effect transistors using thin films deposited by this method and found that the field-effect mobility was enhanced ∼100-fold compared with that of a device fabricated using a film deposited by the conventional spin-coating method.

9.
Sci Rep ; 9(1): 21, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631121

RESUMO

Blending organic semiconductors with insulating polymers has been known to be an effective way to overcome the disadvantages of single-component organic semiconductors for high-performance organic field-effect transistors (OFETs). We show that when a solution processable organic semiconductor (6,13-bis(triisopropylsilylethynyl)pentacene, TIPS-pentacene) is blended with an insulating polymer (PS), morphological and structural characteristics of the blend films could be significantly influenced by the processing conditions like the spin coating time. Although vertical phase-separated structures (TIPS-pentacene-top/PS-bottom) were formed on the substrate regardless of the spin coating time, the spin time governed the growth mode of the TIPS-pentacene molecules that phase-separated and crystallized on the insulating polymer. Excess residual solvent in samples spun for a short duration induces a convective flow in the drying droplet, thereby leading to one-dimensional (1D) growth mode of TIPS-pentacene crystals. In contrast, after an appropriate spin-coating time, an optimum amount of the residual solvent in the film led to two-dimensional (2D) growth mode of TIPS-pentacene crystals. The 2D spherulites of TIPS-pentacene are extremely advantageous for improving the field-effect mobility of FETs compared to needle-like 1D structures, because of the high surface coverage of crystals with a unique continuous film structure. In addition, the porous structure observed in the 2D crystalline film allows gas molecules to easily penetrate into the channel region, thereby improving the gas sensing properties.

10.
RSC Adv ; 9(11): 6356-6362, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35517306

RESUMO

The commercialization of organic electronics will require minimizing the use of halogenated solvents used to solution-process organic semiconductors, which is a crucial step for large-area coating methods, such as the dip-coating method. Here, we report a novel biphasic dip-coating method which uses a water-based biphasic solution and produces a uniform, smooth, and crystalline conjugated polymer thin film in the presence of a solvent additive. We demonstrated that a solvent additive with a high boiling point and solubility parameter similar to that of the solution affected the solvent evaporation rate and improved the crystallinity of the dip-coated polymer thin film. The method used to add the solvent strongly influenced how the solvent additive diffused into the polymer solution, which affected the resulting film morphology. The crystallinity and morphology of the polymer films were correlated with the electrical characteristics, and the most crystalline film displayed a high hole field effect mobility of 0.0391 cm2 V-1 s-1 when processed from the solvent mixture without post-treatment. Our findings provide a direction for the development of reliable and promising organic thin film transistor technologies.

11.
RSC Adv ; 9(1): 529-535, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-35521569

RESUMO

A facile, reliable, fast-response poly(3-hexylthiophene-2,5-diyl) (P3HT)-based humidity sensor was developed by introducing metal-organic frameworks (MOFs), HKUST-1, into the semiconducting layer. HKUST-1 displayed an excellent ability to capture water molecules, thereby generating and attracting charge carriers derived from the water molecules present in the active layer. The HKUST-1/P3HT hybrid film showed excellent device sensitivity with an enhanced electrical current and a threshold voltage shift as a function of the relative humidity due to the superior gas capture properties and the porosity of HKUST-1. The surface energy of the substrate altered the distribution and location of HKUST-1 in the active layer, which improved the sensitivity of the hydrophilic surface. A dynamic gas sensing test revealed that the hybrid film displayed a reliable and stable performance with fast response and recovery times. The introduction of MOFs into a conjugated polymer stabilized and sensitized the devices, providing a facile method of improving gas sensor technologies based on organic semiconductors.

12.
ACS Appl Mater Interfaces ; 9(14): 12391-12399, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28322545

RESUMO

The LiFePO4 surface is coated with AlF3 via a simple chemical precipitation for aqueous rechargeable lithium ion batteries (ARLBs). During electrochemical cycling, the unfavorable side reactions between LiFePO4 and the aqueous electrolyte (1 M Li2SO4 in water) leave a highly resistant passivation film, which causes a deterioration in the electrochemical performance. The coated LiFePO4 by 1 wt % AlF3 has a high discharge capacity of 132 mAh g-1 and a highly improved cycle life, which shows 93% capacity retention even after 100 cycles, whereas the pristine LiFePO4 has a specific capacity of 123 mAh g-1 and a poor capacity retention of 82%. The surface analysis results, which include X-ray photoelectron spectroscopy and transmission electron microscopy results, show that the AlF3 coating material is highly effective for reducing the detrimental surface passivation by relieving the electrochemical side reactions of the fragile aqueous electrolyte. The AlF3 coating material has good compatibility with the LiFePO4 cathode material, which mitigates the surface diffusion obstacles, reduces the charge-transfer resistances and improves the electrochemical performance and surface stability of the LiFePO4 material in aqueous electrolyte solutions.

13.
Polymers (Basel) ; 9(9)2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30965741

RESUMO

Inkjet printing techniques for the etching of polymers and their application to the fabrication of organic electronic devices are reviewed. A mechanism is proposed for the formation of via holes in polymer layers through inkjet printing with solvent, and recent achievements in the fabrication with inkjet etching of various three-dimensional microstructures (i.e., microwells, microgrooves, hexagonal holes, and concave structures) are discussed. In addition, organic electronic devices are presented that use inkjet-etched subtractive patterns as platforms for the selective depositions of an emissive material, a liquid crystal, an organic conductor, an organic insulator, and an organic semiconductor, and as an optical waveguide.

14.
ACS Appl Mater Interfaces ; 9(11): 9871-9879, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28032750

RESUMO

Spin-casting a polymer semiconductor solution over a short period of only a few seconds dramatically improved the molecular ordering and charge transport properties of the resulting semiconductor thin films. In this process, it was quite important to halt spinning before the drying line propagation had begun. Here, we elucidated the effects of the substrate surface characteristics on the drying kinetics during spin-coating, systematically investigated the microstructural evolution during semiconducting polymer solidification, and evaluated the performances of the resulting polymer field-effect transistors. We demonstrated that the spin time required to enhance the molecular ordering and electrical properties of the polythiophene thin films was strongly correlated with the solidification onset time, which was altered by surface treatments introduced onto the substrate surfaces.

15.
Materials (Basel) ; 9(8)2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28773772

RESUMO

Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representative studies using soluble acene/insulating polymer blends as an inkjet-printed active layer in OFETs are introduced with special attention paid to the phase separation characteristics of such blended films. In addition, inkjet-printed semiconducting/insulating polymer blends for fabricating high performance printed OFETs are reviewed.

16.
J Nanosci Nanotechnol ; 15(8): 6001-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26369187

RESUMO

One of the major challenges to the fabrication of functionalized templates using self-assembled monolayers (SAMs) is the characterization of nanoscale defects, particularly SAM domain boundaries (DBs). In this study, an etchant was used to chemically amplify the DBs in a SAM by forming microscale pits in the underlying SiO2 layer. This approach revealed that the naturally occurring DBs acted as structural defects in the SAMs. The DB structures were characterized by systematically varying the octadecyltrichlorosilane (ODTS) monolayer domain size from the nanoscale to the microscale by varying the preparation temperature. These approaches showed that the SAM DBs, which were visualized as having round- and line-shaped nanoscale structures, provided potentially chemical and mechanical surface defect sites. Our principal findings open up exciting new possibilities for understanding the structural defects in SAMs on the molecular level and suggest an approach for optimizing the conditions used to generate defect-free SAM templates.

17.
Sci Rep ; 5: 13288, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26299676

RESUMO

Spin-coating has been used extensively in the fabrication of electronic devices; however, the effects of the processing parameters have not been fully explored. Here, we systematically characterize the effects of the spin-coating time on the microstructure evolution during semiconducting polymer solidification in an effort to establish the relationship between this parameter and the performances of the resulting polymer field-effect transistors (FETs). We found that a short spin-coating time of a few seconds dramatically improve the morphology and molecular order in a conjugated polymer thin film because the π-π stacking structures formed by the polymer molecules grow slowly and with a greater degree of order due to the residual solvent present in the wet film. The improved ordering is correlated with improved charge carrier transport in the FETs prepared from these films. We also demonstrated the effects of various processing additives on the resulting FET characteristics as well as on the film drying behavior during spin-coating. The physical properties of the additives are found to affect the film drying process and the resulting device performance.

18.
ACS Appl Mater Interfaces ; 5(17): 8591-6, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23937407

RESUMO

We demonstrate low-voltage, flexible, transparent pentacene humidity sensors with ultrahigh sensitivity, good reliability, and fast response/recovery behavior. The excellent performances of these devices are derived from an inserted polyelectrolyte (poly[2-(methacryloyloxy)ethyltrimethylammonium chloride-co-3-(trimethoxysilyl)propyl methacrylate] (poly(METAC-co-TSPM)) interlayer, which releases free Cl- ions in the electrolyte dielectric layer under humid conditions and boosts the electrical current in the transistor channel. This has led to extreme device sensitivity, such that electrical signal variations exceeding 7 orders of magnitude have been achieved in response to a 15% change in the relative humidity level. The new sensors exhibit a fast responsivity and a stable performance toward changes in humidity levels. Furthermore, the humidity sensors, mounted on flexible substrates, provided low voltage (<5 V) operation while preserving the unique ultrasensitivity and fast responsivity of these devices. We believe that the strategy of utilizing the enhanced ion motion in an inserted polyelectrolyte layer of an OFET structure can potentially improve sensor technologies beyond humidity-responsive systems.


Assuntos
Eletrólitos/química , Transistores Eletrônicos , Umidade , Polímeros/química , Dióxido de Silício/química
19.
Adv Mater ; 25(15): 2162-6, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23355141

RESUMO

The evaporation-induced self-alignment of semiconductor nanowires is achieved using wrinkled elastomeric templates. The wrinkled templates, which have a surface topography that can be tuned via changes in the mechanical strain, are used as both a template to align the nanowires and as a stamp to transfer the aligned nanowires to target substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...