Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 20(11): 6992-6995, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32604547

RESUMO

The Shingle Photovoltaic (PV) module is a new high power PV module technology manufactured by 'Dividing and ECA (Electrical Conductivity Adhesive) bonding' method for solar cell. In the case of a general PV module, a metal ribbon is soldered on the bus bar of the solar cell and connected to others. The dividing/ECA bonding technology connects the divided cells through bonding to manufacture a string. In order to make a module, the fabricated strings must be connected with Bus ribbon. The Shingled strings produced by the dividing and bonding method are not limited to the interconnection method by the metal ribbon. Also, it is not standardized for interconnections between strings. Therefore, we analyzed the characteristics of the shingled strings according to the soldering method. The characteristics of the string vary depending on the number of metal ribbons that contact the solar cell electrodes. Experimental results show that the series resistance increases significantly with fewer contacts. As a result, the efficiency of two-point contact decreased by 0.458%, four-point contact decreased by 0.048%, and eight-point contact decreased by 0.034%. This is because as the number of contacts increases, the resistance of the busbars becomes smaller and the contact resistance becomes smaller.

2.
J Nanosci Nanotechnol ; 20(1): 135-142, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31383148

RESUMO

To improve the productivity of a photovoltaic (PV) module, TiO2 thin films of different thicknesses were applied as a self-cleaning layer on soda-lime glass and a Si PV module by spray-coating a TiO2 solution. The structural, optical, and wettability characteristics of the TiO2 thin films were investigated with respect to the thickness. Thermogravimetric-differential thermal analysis, X-ray diffraction, field-emission scanning electron microscopy, contact-angle analysis, ultraviolet-visible spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and a solar simulator were used to analyze the prepared TiO2 thin films. The optimal thickness was determined to be 100 nm. The TiO2 thin film exhibited a self-cleaning ability even after post-annealing at 250 °C. After the self-cleaning ability was confirmed, the TiO2 thin film was applied to the PV module.

3.
J Nanosci Nanotechnol ; 14(5): 3880-3, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24734656

RESUMO

In this work, cadmium sulfide (CdS) films were deposited on flexible polymer substrates such as polycarbonate (PC) and polyethylene terephthalate (PET). The r.f. magnetron sputtering, which is cost-effective scalable technique, was used for the film deposition. The structural and optical properties of the films grown at different sputtering pressures were investigated. When the CdS film was deposited at lower pressure, the crystallinity and the preferred orientation toward c-axis in hexagonal phase was improved. However, the optical transmittance was reduced as the sputtering pressure was decreased. Compared with the glass substrate, CdS films grown on polymer substrates were exhibited some wore structural and optical characteristics. CdTe thin film solar cell applied to sputtered CdS as a window layer showed a maximum efficiency of 11.6%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...