Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 630(Pt A): 212-222, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242881

RESUMO

Ligand-assisted re-precipitation (LARP) is one of the most practicing techniques for synthesizing colloidal nanocrystals (NCs). But due to its fast reaction kinetics, it offers limited synthesis control. In the present study, we report a novel, precursor silanization-based room temperature technique unveiling slow crystallization of Cs4PbBr6/CsPbBr3 dual-phase nanocrystals (DPNCs) protected with a dense silica cloud-like matrix. Unlike conventional LARP, we can observe the tuneable optical bandgap of the DPNCs as a function of reaction time because of the slow reaction kinetics. The as-synthesized DPNCs exhibit a high photoluminescence quantum yield (PLQY) of 76% with ultrahigh stability while retaining âˆ¼ 100% of their initial PLQY in an ambient environment with a relative humidity of 55% for more than 1 year. DPNCs demonstrates ambient photostability of 560 h, and water stability of 25 days. This interesting precursor silanization technique developed here can be extended for the synthesis of other nanomaterials.


Assuntos
Nanopartículas , Dióxido de Silício , Compostos de Cálcio , Óxidos
2.
ACS Appl Mater Interfaces ; 13(45): 53725-53735, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34730925

RESUMO

The oxygen evolution reaction (OER) plays a key role in determining the performance of overall water splitting, while a core technological consideration is the development of cost-effective, efficient, and durable catalysts. Here, we demonstrate a robust reduced Fe-oxide@NiCo2O4 bilayered non-precious-metal oxide composite as a highly efficient OER catalyst in an alkaline medium. A bilayered oxide composite film with an interconnected nanoflake morphology (Fe2O3@NiCo2O4) is reduced in an aqueous NaBH4 solution, which results in a mosslike Fe3O4@NiCo2O4 (reduced Fe-oxide@NiCo2O4; rFNCO) nanostructured film with an enhanced electrochemical surface area. The rFNCO film demonstrates an outstanding OER activity with an extraordinary low overpotential of 189 mV at 10 mA cm-2 (246 mV at 100 mA cm-2) and a remarkably small Tafel slope of 32 mV dec-1. The film also shows excellent durability for more than 50 h of continuous operation, even at 100 mA cm-2. Furthermore, density functional theory calculations suggest that the unintentionally in situ doped Ni during the reduction reaction possibly improves the OER performance of the rFNCO catalyst shifting d-band centers of both Fe and Ni active sites.

3.
ACS Photonics ; 8(9): 2699-2704, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34557568

RESUMO

The surprising recent observation of highly emissive triplet-states in lead halide perovskites accounts for their orders-of-magnitude brighter optical signals and high quantum efficiencies compared to other semiconductors. This makes them attractive for future optoelectronic applications, especially in bright low-threshold nanolasers. While nonresonantly pumped lasing from all-inorganic lead-halide perovskites is now well-established as an attractive pathway to scalable low-power laser sources for nano-optoelectronics, here we showcase a resonant optical pumping scheme on a fast triplet-state in CsPbBr3 nanocrystals. The scheme allows us to realize a polarized triplet-laser source that dramatically enhances the coherent signal by 1 order of magnitude while suppressing noncoherent contributions. The result is a source with highly attractive technological characteristics, including a bright and polarized signal and a high stimulated-to-spontaneous emission signal contrast that can be filtered to enhance spectral purity. The emission is generated by pumping selectively on a weakly confined excitonic state with a Bohr radius ∼10 nm in the nanocrystals. The exciton fine-structure is revealed by the energy-splitting resulting from confinement in nanocrystals with tetragonal symmetry. We use a linear polarizer to resolve 2-fold nondegenerate sublevels in the triplet exciton and use photoluminescence excitation spectroscopy to determine the energy of the state before pumping it resonantly.

4.
Macromol Biosci ; 21(11): e2100251, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34369084

RESUMO

Protecting group chemistry is essential for various organic transformation and polymerization processes. In particular, conventional anionic ring-opening polymerization (AROP) often requires proper protecting group chemistry because it is typically incompatible with most functional groups due to the highly basic and nucleophilic conditions. In this context, many functional epoxide monomers with proper protecting groups are developed, including the acetal group as a representative example. Since the early introduction of ethoxyethyl glycidyl ether, there is significant development of acetal-based monomers in the polyethers. These monomers are now utilized not only as protecting groups for hydroxyl groups under AROP conditions but also as pH-responsive moieties for biomedical applications, further expanding their utility in the use of functionalized polyethers. Recent progress in this field is outlined from their synthesis, polymerization, and biomedical applications.


Assuntos
Acetais/química , Compostos de Epóxi/química , Concentração de Íons de Hidrogênio , Polimerização , Polímeros/química
5.
ACS Nano ; 13(11): 13047-13055, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31618016

RESUMO

Two-dimensional (2D) heterostructured or alloyed monolayers composed of transition metal dichalcogenides (TMDCs) have recently emerged as promising materials with great potential for atomically thin electronic applications. However, fabrication of such artificial TMDC heterostructures with a sharp interface and a large crystal size still remains a challenge because of the difficulty in controlling various growth parameters simultaneously during the growth process. Here, a facile synthetic protocol designed for the production of the lateral TMDC heterostructured and alloyed monolayers is presented. A chemical vapor deposition approach combined with solution-processed precursor deposition makes it possible to accurately control the sequential introduction time and the supersaturation levels of the vaporized precursors and thus reliably and exclusively produces selective and heterogeneous epitaxial growth of TMDC monolayer crystals. In addition, TMDC core/shell heterostructured (MoS2/alloy, alloy/WS2) or alloyed (Mo1-xWxS2) monolayers are also easily obtained with precisely controlled growth parameters, such as sulfur introduction timing and growth temperature. These results represent a significant step toward the development of various 2D materials with interesting properties.

6.
Sci Rep ; 8(1): 8124, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802300

RESUMO

We have investigated the emission from InGaN/GaN quantum disks grown on the tip of GaN nanorods. The emission at 3.21 eV from the InGaN quantum disk doesn't show a Stark shift, and it is linearly polarized when excited perpendicular to the growth direction. The degree of linear polarization is about 39.3% due to the anisotropy of the nanostructures. In order to characterize a single nanostructure, the quantum disks were dispersed on a SiO2 substrate patterned with a metal reference grid. By rotating the excitation polarization angle from parallel to perpendicular relative to the nanorods, the variation of overall PL for the 3.21 eV peak was recorded and it clearly showed the degree of linear polarization (DLP) of 51.5%.

7.
Sci Rep ; 8(1): 5380, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29599429

RESUMO

Photoluminescence measurements in mono- and bilayer-MoS2 on SiO2 were undertaken to determine the thermal effect of the MoS2/SiO2 interface on the optical bandgap. The energy and intensity of the photoluminescence from monolayer MoS2 were lower and weaker than those from bilayer MoS2 at low temperatures, whilst the opposite was true at high temperatures above 200 K. Density functional theory calculations suggest that the observed optical bandgap crossover is caused by a weaker substrate coupling to the bilayer than to the monolayer.

8.
Data Brief ; 14: 453-457, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28831407

RESUMO

The dataset presented here is related to the research article entitled "Highly Efficient Electro-optically Tunable Smart-supercapacitors Using an Oxygen-excess Nanograin Tungsten Oxide Thin Film" (Akbar et al., 2017) [9] where we have presented a nanograin WO3 film as a bifunctional electrode for smart supercapacitor devices. In this article we provide additional information concerning nanograin tungsten oxide thin films such as atomic force microscopy, Raman spectroscopy, and X-ray diffraction spectroscopy. Moreover, their electrochemical properties such as cyclic voltammetry, electrochemical supercapacitor properties, and electrochromic properties including coloration efficiency, optical modulation and electrochemical impedance spectroscopy are presented.

9.
Sci Rep ; 7(1): 7152, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28769059

RESUMO

We provide a new insight that the sulphur-depleted MoS2 surface can store hydrogen gas at room temperature. Our findings reveal that the sulphur-vacancy defects preferentially serve as active sites for both hydrogen chemisorption and physisorption. Unexpectedly the sulphur vacancy instantly dissociates the H2 molecules and strongly binds the split hydrogen at the exposed Mo atoms. Thereon the additional H2 molecule is adsorbed with enabling more hydrogen physisorption on the top sites around the sulphur vacancy. Furthermore, the increase of the sulphur vacancy on the MoS2 surface further activates the dissociative hydrogen chemisorption than the H2 physisorption.

10.
ACS Appl Mater Interfaces ; 9(29): 24393-24406, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28678466

RESUMO

This spotlight discusses intriguing properties and diverse applications of graphene (Gr) and Gr analogs. Gr has brought us two-dimensional (2D) chemistry with its exotic 2D features of density of states. Yet, some of the 2D or 2D-like features can be seen on surfaces and at interfaces of bulk materials. The substrate on Gr and functionalization of Gr (including metal decoration, intercalation, doping, and hybridization) modify the unique 2D features of Gr. Despite abundant literature on physical properties and well-known applications of Gr, spotlight works based on the conceptual understanding of the 2D physical and chemical nature of Gr toward vast-ranging applications are hardly found. Here we focus on applications of Gr, based on conceptual understanding of 2D phenomena toward 2D chemistry. Thus, 2D features, defects, edges, and substrate effects of Gr are discussed first. Then, to pattern Gr electronic circuits, insight into differentiating conducting and nonconducting regions is introduced. By utilizing the unique ballistic electron transport properties and edge spin states of Gr, Gr nanoribbons (GNRs) are exploited for the design of ultrasensitive molecular sensing electronic devices (including molecular fingerprinting) and spintronic devices. The highly stable nature of Gr can be utilized for protection of corrosive metals, moisture-sensitive perovskite solar cells, and highly environment-susceptible topological insulators (TIs). Gr analogs have become new types of 2D materials having novel features such as half-metals, TIs, and nonlinear optical properties. The key insights into the functionalized Gr hybrid materials lead to the applications for not only energy storage and electrochemical catalysis, green chemistry, and electronic/spintronic devices but also biosensing and medical applications. All these topics are discussed here with the focus on conceptual understanding. Further possible applications of Gr, GNRs, and Gr analogs are also addressed in a section on outlook and future challenges.


Assuntos
Grafite/química , Catálise , Nanotubos de Carbono
11.
Nanoscale ; 9(30): 10647-10652, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28534900

RESUMO

Due to its unique layer-number dependent electronic band structure and strong excitonic features, atomically thin MoS2 is an ideal 2D system where intriguing photoexcited-carrier-induced phenomena can be detected in excitonic luminescence. We perform micro-photoluminescence (PL) measurements and observe that the PL peak redshifts nonlinearly in mono- and bi-layer MoS2 as the excitation power is increased. The excited carrier-induced optical bandgap shrinkage is found to be proportional to n4/3, where n is the optically-induced free carrier density. The large exponent value of 4/3 is explicitly distinguished from a typical value of 1/3 in various semiconductor quantum well systems. The peculiar n4/3 dependent optical bandgap redshift may be due to the interplay between bandgap renormalization and reduced exciton binding energy.

12.
ACS Nano ; 11(3): 3207-3212, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28231429

RESUMO

Despite having outstanding electrical properties, graphene is unsuitable for optical devices because of its zero band gap. Here, we report two-dimensional excitonic photoluminescence (PL) from graphene grown on a Cu(111) surface, which shows an unexpected and remarkably sharp strong emission near 3.16 eV (full width at half-maximum ≤3 meV) and multiple emissions around 3.18 eV. As temperature increases, these emissions blue shift, displaying the characteristic negative thermal coefficient of graphene. The observed PL originates from the significantly suppressed dispersion of excited electrons in graphene caused by hybridization of graphene π and Cu d orbitals of the first and second Cu layers at a shifted saddle point 0.525(M+K) of the Brillouin zone. This finding provides a pathway to engineering optoelectronic graphene devices, while maintaining the outstanding electrical properties of graphene.

13.
Sci Rep ; 6: 38730, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27974834

RESUMO

1 T phase incorporation into 2H-MoS2 via an optimal electron irradiation leads to induce a weak ferromagnetic state at room temperature, together with the improved transport property. In addition to the 1T-like defects, the electron irradiation on the cleaved MoS2 surface forms the concentric circle-type defects that are caused by the 2 H/1 T phase transition and the vacancies of the nearby S atoms of the Mo atoms. The electron irradiation-reduced bandgap is promising in vanishing the Schottky barrier to attaining spintronics device. The simple method to control and improve the magnetic and electrical properties on the MoS2 surface provides suitable ways for the low-dimensional device applications.

14.
Sci Rep ; 6: 25449, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27147195

RESUMO

We investigated the optical properties of Ge nanocrystals surrounded by Ge3N4. The broad emission ranging from infrared to blue is due to the dependence on the crystal size and preparation methods. Here, we report high resolution Photoluminescence (PL) attributed to emission from individual Ge nanocrystals (nc-Ge) spatially resolved using micro-photoluminescence and detailed using temperature and power-dependent photoluminescence studies. The measured peaks are shown to behave with excitonic characteristics and we argue that the spread of the nc-Ge peaks in the PL spectrum is due to different confinement energies arising from the variation in size of the nanocrystals.

15.
Biomaterials ; 35(29): 8321-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24996757

RESUMO

Graphene has been attracting considerable interest in the field of biomedical engineering because graphene and its derivatives are considered to be ideal platforms for supporting cell growth and differentiation. Here we report that graphene promotes the reprogramming of mouse somatic fibroblasts into induced pluripotent stem cells (iPSCs). We constructed a layer of graphene film on a glass substrate and characterized it as a monolayer using Raman spectroscopy. We found that the graphene substrate significantly improved cellular reprogramming efficiency by inducing mesenchymal-to-epithelial-transition (MET) which is known to affect H3K4me3 levels. Thus, our results reveal that a graphene substrate directly regulates dynamic epigenetic changes associated with reprogramming, providing an efficient tool for epigenetic pluripotent reprogramming.


Assuntos
Materiais Biocompatíveis/metabolismo , Reprogramação Celular/efeitos dos fármacos , Fibroblastos/citologia , Grafite/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Diferenciação Celular , Linhagem Celular , Epigênese Genética , Transição Epitelial-Mesenquimal , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos SCID
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...