Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 23(8): 3235-3242, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35881504

RESUMO

Electron microscopy of soft and biological materials, or "soft electron microscopy", is essential to the characterization of macromolecules. Soft microscopy is governed by enhancing contrast while maintaining low electron doses, and sample preparation and imaging methodologies are driven by the length scale of features of interest. While cryo-electron microscopy offers the highest resolution, larger structures can be characterized efficiently and with high contrast using low-voltage electron microscopy by performing scanning transmission electron microscopy in a scanning electron microscope (STEM-in-SEM). Here, STEM-in-SEM is demonstrated for a four-lobed protein assembly where the arrangement of the proteins in the construct must be examined. STEM image simulations show the theoretical contrast enhancement at SEM-level voltages for unstained structures, and experimental images with multiple STEM modes exhibit the resolution possible for negative-stained proteins. This technique can be extended to complex protein assemblies, larger structures such as cell sections, and hybrid materials, making STEM-in-SEM a valuable high-throughput imaging method.


Assuntos
Elétrons , Microscopia Crioeletrônica/métodos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão e Varredura/métodos
2.
Bioconjug Chem ; 32(1): 143-152, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33301672

RESUMO

This paper presents a method to synthetically tune atomically precise megamolecule nanobody-enzyme conjugates for prodrug cancer therapy. Previous efforts to create heterobifunctional protein conjugates suffered from heterogeneity in domain stoichiometry, which in part led to the failure of antibody-enzyme conjugates in clinical trials. We used the megamolecule approach to synthesize anti-HER2 nanobody-cytosine deaminase conjugates with tunable numbers of nanobody and enzyme domains in a single, covalent molecule. Linking two nanobody domains to one enzyme domain improved avidity to a human cancer cell line by 4-fold but did not increase cytotoxicity significantly due to lowered enzyme activity. In contrast, a megamolecule composed of one nanobody and two enzyme domains resulted in an 8-fold improvement in the catalytic efficiency and increased the cytotoxic effect by over 5-fold in spheroid culture, indicating that the multimeric structure allowed for an increase in local drug activation. Our work demonstrates that the megamolecule strategy can be used to study structure-function relationships of protein conjugate therapeutics with synthetic control of protein domain stoichiometry.


Assuntos
Antineoplásicos/uso terapêutico , Enzimas/química , Pró-Fármacos/uso terapêutico , Anticorpos de Domínio Único/química , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Humanos , Pró-Fármacos/administração & dosagem , Estudo de Prova de Conceito , Relação Estrutura-Atividade
3.
Adv Mater ; 32(4): e1906626, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31814172

RESUMO

Under an applied magnetic field, superparamagnetic Fe3 O4 nanoparticles with complementary DNA strands assemble into crystalline, pseudo-1D elongated superlattice structures. The assembly process is driven through a combination of DNA hybridization and particle dipolar coupling, a property dependent on particle composition, size, and interparticle distance. The DNA controls interparticle distance and crystal symmetry, while the magnetic field leads to anisotropic crystal growth. Increasing the dipole interaction between particles by increasing particle size or external field strength leads to a preference for a particular crystal morphology (e.g., rhombic dodecahedra, stacked clusters, and smooth rods). Molecular dynamics simulations show that an understanding of both DNA hybridization energetic and magnetic interactions is required to predict the resulting crystal morphology. Taken together, the data show that applied magnetic fields with magnetic nanoparticles can be deliberately used to access nanostructures beyond what is possible with DNA hybridization alone.

4.
Theranostics ; 5(6): 631-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25825602

RESUMO

Increasing cell survival in stem cell therapy is an important challenge for the field of regenerative medicine. Here, we report theranostic mesoporous silica nanoparticles that can increase cell survival through both diagnostic and therapeutic approaches. First, the nanoparticle offers ultrasound and MRI signal to guide implantation into the peri-infarct zone and away from the most necrotic tissue. Second, the nanoparticle serves as a slow release reservoir of insulin-like growth factor (IGF)-a protein shown to increase cell survival. Mesenchymal stem cells labeled with these nanoparticles had detection limits near 9000 cells with no cytotoxicity at the 250 µg/mL concentration required for labeling. We also studied the degradation of the nanoparticles and showed that they clear from cells in approximately 3 weeks. The presence of IGF increased cell survival up to 40% (p<0.05) versus unlabeled cells under in vitro serum-free culture conditions.


Assuntos
Células-Tronco Mesenquimais/diagnóstico por imagem , Nanopartículas/química , Dióxido de Silício/farmacocinética , Animais , Linhagem Celular , Ecocardiografia , Humanos , Imageamento por Ressonância Magnética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Nanopartículas/efeitos adversos , Nanopartículas/metabolismo , Dióxido de Silício/efeitos adversos , Dióxido de Silício/química , Somatomedinas/administração & dosagem , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...