Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biopolymers ; 110(4): e23256, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30633339

RESUMO

Peptoids are versatile peptidomimetic molecules with wide-ranging applications from drug discovery to materials science. An understanding of peptoid sequence features that contribute to both their three-dimensional structures and their interactions with lipids will expand functions of peptoids in varied fields. Furthermore, these topics capture the enthusiasm of undergraduate students who prepare and study diverse peptoids in laboratory coursework and/or in faculty led research. Here, we present the synthesis and study of 21 peptoids with varied functionality, including 19 tripeptoids and 2 longer oligomers. We observed differences in fluorescence spectral features for 10 of the tripeptoids that correlated with peptoid flexibility and relative positioning of chromophores. Interactions of representative peptoids with sonicated glycerophospholipid vesicles were also evaluated using fluorescence spectroscopy. We observed evidence of conformational changes effected by lipids for select peptoids. We also summarize our experiences engaging students in peptoid-based projects to advance both research and undergraduate educational objectives in parallel.


Assuntos
Glicerofosfolipídeos/química , Peptoides/química , Concentração de Íons de Hidrogênio , Conformação Molecular , Peptoides/síntese química , Peptoides/isolamento & purificação , Espectrometria de Fluorescência
2.
Polymers (Basel) ; 10(8)2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30960769

RESUMO

Cyclic polymers were produced by end-to-end coupling of telechelic linear polymers under dilute conditions in THF, using intramolecular atom transfer radical coupling or click chemistry. In addition to the expected shift to longer elution times on gel permeation chromatography (GPC) indicative of the formation of cyclic product, lower molecular weight species were consistently observed upon analysis of the unpurified cyclization reaction mixture. By systematically removing or altering single reaction components in the highly dilute cyclization reaction, it was found that THF itself was responsible for the low-molecular-weight material, forming oligomeric chains of poly(THF) regardless of the other reaction components. When the reactions were performed at higher concentrations and for shorter time intervals, conducive to intermolecular chain-end-joining reactions, the low-molecular-weight peaks were absent. Isolation of the material and analysis by ¹H NMR confirmed that poly(THF) was being formed in the highly dilute conditions required for cyclization by end-to-end coupling. When a series of mock cyclization reactions were performed with molar ratios of the reactants held constant, but concentrations changed, it was found that lower concentrations of reactants led to higher amounts of poly(THF) side product.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...