Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Environ Assess Manag ; 17(5): 911-925, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33620129

RESUMO

Bioaccumulation (B) assessment is challenging because there are various B-metrics from laboratory and field studies, multiple criteria and thresholds for classifying bioaccumulative (B), very bioaccumulative (vB), and not bioaccumulative (nB) chemicals, as well as inherent variability and uncertainty in the data. These challenges can be met using a weight of evidence (WoE) approach. The Bioaccumulation Assessment Tool (BAT) provides a transparent WoE assessment framework that follows Organisation for Economic Co-operation and Development (OECD) principles for performing a WoE analysis. The BAT guides an evaluator through the process of data collection, generation, evaluation, and integration of various lines of evidence (LoE) (i.e., B-metrics) to inform decision-making. Phenanthrene (PHE) is a naturally occurring chemical for which extensive B and toxicokinetics data are available. A B assessment for PHE using the BAT is described that includes a critical evaluation of 74 measured in vivo LoE for fish and invertebrate species from laboratory and field studies. The number of LoE are reasonably well balanced across taxa (i.e., fish and invertebrates) and the different B-metrics. Additionally, in silico and in vitro biotransformation rate estimates and corresponding model-predicted B-metrics are included as corroborating evidence. Application of the BAT provides a consistent, coherent, and scientifically defensible WoE evaluation to conclude that PHE is not bioaccumulative (nB) because the overwhelming majority of the bioconcentration, bioaccumulation, and biomagnification metrics for both fish and invertebrates are below regulatory thresholds. An analysis of the relevant data using fugacity ratios is also provided, showing that PHE does not biomagnify in aquatic food webs. The critical review identifies recommendations to increase the consistency of B assessments, such as improved standardization of B testing guidelines, data reporting requirements for invertebrate studies, and consideration of temperature and salinity effects on certain B-metrics. Integr Environ Assess Manag 2021;17:911-925. © 2021 Concawe. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecotoxicologia , Fenantrenos , Animais , Bioacumulação , Peixes , Cadeia Alimentar , Fenantrenos/toxicidade , Medição de Risco
2.
Integr Environ Assess Manag ; 7(1): 50-74, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21184569

RESUMO

This paper reviews the tissue residue approach (TRA) for toxicity assessment as it applies to organic chemicals and some organometallic compounds (Sn, Hg, and Pb) in aquatic organisms. Specific emphasis was placed on evaluating key factors that influence interpretation of critical body residue (CBR) toxicity metrics including data quality issues, lipid dynamics, choice of endpoints, processes that alter toxicokinetics and toxicodynamics, phototoxicity, species- and life stage-specific sensitivities, and biotransformation. The vast majority of data available on TRA is derived from laboratory studies of acute lethal responses to organic toxicants exhibiting baseline toxicity. Application of the TRA to various baseline toxicants as well as substances with specific modes of action via receptor-mediated processes, such as chlorinated aromatic hydrocarbons, pesticides, and organometallics is discussed, as is application of TRA concepts in field assessments of tissue residues. In contrast to media-based toxicity relationships, CBR values tend to be less variable and less influenced by factors that control bioavailability and bioaccumulation, and TRA can be used to infer mechanisms of toxic action, evaluate the toxicity of mixtures, and interpret field data on bioaccumulated toxicants. If residue-effects data are not available, body residues can be estimated, as has been done using the target lipid model for baseline toxicants, to derive critical values for risk assessment. One of the primary unresolved issues complicating TRA for organic chemicals is biotransformation. Further work on the influence of biotransformation, a better understanding of contaminant lipid interactions, and an explicit understanding of the time dependency of CBRs and receptor-mediated toxicity are all required to advance this field. Additional residue-effects data on sublethal endpoints, early life stages, and a wider range of legacy and emergent contaminants will be needed to improve the ability to use TRA for organic and organometallic compounds.


Assuntos
Compostos Organometálicos/farmacocinética , Compostos Organometálicos/toxicidade , Poluentes Químicos da Água/farmacocinética , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos , Biotransformação , Cinética , Lipídeos , Compostos Organometálicos/metabolismo , Distribuição Tecidual , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...