Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 81(6): 2227-34, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19231842

RESUMO

Nitrous oxide (N(2)O) plays important roles in atmospheric chemistry both as a greenhouse gas and in stratospheric ozone depletion. Isotopic measurements of N(2)O have provided an invaluable insight into understanding its atmospheric sources and sinks. The preference for (15)N fractionation between the central and terminal positions (the "site preference") is particularly valuable because it depends principally on the processes involved in N(2)O production or consumption, rather than the (15)N content of the substrate from which it is formed. Despite the value of measurements of the site preference, there is no internationally recognized standard reference material of accurately known and accepted site preference, and there has been some lack of agreement in published studies aimed at providing such a standard. Previous work has been based on isotope ratio mass spectrometry (IRMS); in this work we provide an absolute calibration for the intramolecular site preference of (15)N fractionation of working standard gases used in our laboratory by a completely independent technique--high-resolution Fourier transform infrared (FT-IR) spectroscopy. By reference to this absolute calibration, we determine the site preference for 25 samples of tropospheric N(2)O collected under clean air conditions to be 19.8 per thousand +/- 2.1 per thousand. This result is in agreement with that based on the earlier absolute calibration of Toyoda and Yoshida (Toyoda , S. , and Yoshida , N. Anal. Chem. 1999 , 71, 4711-4718 ) who found an average tropospheric site preference of 18.7 per thousand +/- 2.2 per thousand. We now recommend an interlaboratory exchange of working standard N(2)O gases as the next step to providing an international reference standard.

2.
Environ Monit Assess ; 124(1-3): 51-61, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17058020

RESUMO

The inorganic nitrogen transformations occurring at a municipal waste leachate treatment facility were investigated. The treatment facility consisted of a collection well and an artificial wetland between two aeration ponds. The first aeration pond showed a decrease in ammonium (from 3480 (+/- 120) to 630(+/- 90) mg x L(-1)), a reduction in inorganic nitrogen load (3480 to 1680 mg N x L(-1)), and an accumulation of nitrite (< 1.3 mg-N x L(-1) in the collection well, to 1030 mg-N x L(-1)). Incomplete ammonium oxidation was presumably the result of the low concentration of carbonate alkalinity (approximately 2 mg x L(-1)), which may cause a limitation in the ammonium oxidation rate of nitrifiers. Low carbonate alkalinity levels may have been the result of stripping of CO(2) from the first aeration pond at the high aeration rates and low pH. Various chemodenitrification mechanisms are discussed as the reason for the reduction in the inorganic nitrogen load, including; the reduction of nitrite by iron (II) (producing various forms of gaseous nitrogen); and reactions involving nitrous acid. It is suggested that the accumulation of nitrite may be the result of inhibition of nitrite oxidizers by nitrous acid and low temperatures. Relative to the first aeration pond, the speciation and concentration of inorganic nitrogen was stable in the wetlands and 2nd aeration pond. The limited denitrification in the wetlands most probably occurred due to low concentrations of organic carbon, and short retention times.


Assuntos
Nitrogênio/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Álcalis/química , Carbonatos/química , Carbonatos/metabolismo , Concentração de Íons de Hidrogênio , Metais Pesados/química , Nitritos/química , Nitritos/metabolismo , Nitrogênio/química , Ácido Nitroso/química , Oxirredução , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/metabolismo , Temperatura , Poluentes Químicos da Água/química , Áreas Alagadas
3.
Isotopes Environ Health Stud ; 42(1): 9-20, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16500751

RESUMO

Continuous records of isotope behaviour in the environment are invaluable to understanding mass and energy fluxes. Although techniques such as isotope ratio mass spectrometry provide high precision data, they are not well suited to the analysis of a large number of samples and are currently restricted to use in the laboratory. Fourier transform infrared spectrometers are relatively cheap and sufficiently portable and robust to be taken into the field to collect continuous records of gas-phase isotope behaviour. Several examples of the application of this technique will be presented. One data set provides half-hourly determinations of vertical profiles of D/H in water vapour above agricultural fields over a 3-week period; the same infrared spectra can also be used to determine 13C/12C in CO2. The technique has also been applied to the study of CO2 in ambient air and in a limestone cave system. Some of the features and complications associated with the method will also be considered.


Assuntos
Ar/análise , Dióxido de Carbono/química , Isótopos de Carbono/química , Deutério/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Agricultura , Ecossistema , Humanos , Plantas/metabolismo , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...