Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(4): e2317054121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38227671

RESUMO

Kelp forests are highly productive and economically important ecosystems worldwide, especially in the North Pacific Ocean. However, current hypotheses for their evolutionary origins are reliant on a scant fossil record. Here, we report fossil hapteral kelp holdfasts from western Washington State, USA, indicating that kelp has existed in the northeastern Pacific Ocean since the earliest Oligocene. This is consistent with the proposed North Pacific origin of kelp associated with global cooling around the Eocene-Oligocene transition. These fossils also support the hypotheses that a hapteral holdfast, rather than a discoid holdfast, is the ancestral state in complex kelps and suggest that early kelps likely had a flexible rather than a stiff stipe. Early kelps were possibly grazed upon by mammals like desmostylians, but fossil evidence of the complex ecological interactions known from extant kelp forests is lacking. The fossil record further indicates that the present-day, multi-story kelp forest had developed at latest after the mid-Miocene climate optimum. In summary, the fossils signify a stepwise evolution of the kelp ecosystem in the North Pacific, likely enabled by changes in the ocean-climate system.


Assuntos
Ecossistema , Kelp , Animais , Florestas , Clima , Oceano Pacífico , Mamíferos
2.
J Synchrotron Radiat ; 29(Pt 2): 505-514, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254315

RESUMO

Ideal three-dimensional imaging of complex samples made up of micron-scale structures extending over mm to cm, such as biological tissues, requires both wide field of view and high resolution. For existing optics and detectors used for micro-CT (computed tomography) imaging, sub-micron pixel resolution can only be achieved for fields of view of <2 mm. This article presents a unique detector system with a 6 mm field-of-view image circle and 0.5 µm pixel size that can be used in micro-CT units utilizing both synchrotron and commercial X-ray sources. A resolution-test pattern with linear microstructures and whole adult Daphnia magna were imaged at beamline 8.3.2 of the Berkeley Advanced Light Source. Volumes of 10000 × 10000 × 7096 isotropic 0.5 µm voxels were reconstructed over a 5.0 mm × 3.5 mm field of view. Measurements in the projection domain confirmed a 0.90 µm measured spatial resolution that is largely Nyquist-limited. This unprecedented combination of field of view and resolution dramatically reduces the need for sectional scans and computational stitching for large samples, ultimately offering the means to elucidate changes in tissue and cellular morphology in the context of larger, whole, intact model organisms and specimens. This system is also anticipated to benefit micro-CT imaging in materials science, microelectronics, agricultural science and biomedical engineering.


Assuntos
Imageamento Tridimensional , Síncrotrons , Imageamento Tridimensional/métodos , Microtomografia por Raio-X/métodos , Raios X
3.
J Mech Behav Biomed Mater ; 110: 103887, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32957194

RESUMO

All levels of the unique hierarchical structure of bone, consisting of collagen and hydroxyapatite crystals at the nanoscale to osteon/lamellae structures at the microscale, contribute to its characteristic toughness and material properties. Elements of bone's density and size contribute to bone quantity (or bone mass), whereas elements of bone's material composition, material properties, internal structure, and organization describe bone quality. Bone quantity and quality can be degraded by factors such as aging, disease, treatments, and irradiation, compromising its ability to resist fracture and sustain loading. Accessing the morphology and architecture of bone at the microscale to quantify microstructural features and assess the degree of mineralization and path of crack propagation in bone provides crucial information on how these factors are influencing bone quantity and quality. Synchrotron radiation micro-computed tomography (SRµCT) was first used to assess bone structure at the end of the 1990's. One of the main advantages of the technique is that it enables accurate three-dimensional (3D), non-destructive quantification of structure while traditional histomorphometry on histological sections is inherantly destructive to the sample and two-dimensional (2D). Additionally, SRµCT uses monochromatic, high-flux X-ray beams to provide high-resolution and high-contrast imaging of bone samples. This allows the quantification of small microstructural features (e.g. osteocyte lacunae, canals, trabeculae, microcracks) and direct gray value compositional mapping (e.g. mineral quantification, cement lines) with greater speed and fidelity than lab-based micro-computed tomography. In this article, we review how SRµCT has been applied to bone research to elucidate the mechanisms by which bone aging, disease, and other factors affect bone fragility and resistance to fracture.


Assuntos
Osso e Ossos , Síncrotrons , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Ósteon , Microtomografia por Raio-X
4.
Insects ; 11(10)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977418

RESUMO

Tsetse flies (genus Glossina), the sole vectors of African trypanosomiasis, are distinct from most other insects, due to dramatic morphological and physiological adaptations required to support their unique biology. These adaptations are driven by demands associated with obligate hematophagy and viviparous reproduction. Obligate viviparity entails intrauterine larval development and the provision of maternal nutrients for the developing larvae. The reduced reproductive capacity/rate associated with this biology results in increased inter- and intra-sexual competition. Here, we use phase contrast microcomputed tomography (pcMicroCT) to analyze morphological adaptations associated with viviparous biology. These include (1) modifications facilitating abdominal distention required during blood feeding and pregnancy, (2) abdominal and uterine musculature adaptations for gestation and parturition of developed larvae, (3) reduced ovarian structure and capacity, (4) structural features of the male-derived spermatophore optimizing semen/sperm delivery and inhibition of insemination by competing males and (5) structural features of the milk gland facilitating nutrient incorporation and transfer into the uterus. Three-dimensional analysis of these features provides unprecedented opportunities for examination and discovery of internal morphological features not possible with traditional microscopy techniques and provides new opportunities for comparative morphological analyses over time and between species.

5.
Nat Commun ; 6: 7612, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26139445

RESUMO

X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue--magnetic X-ray tomography--is yet to be developed. Here we demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. The 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. Using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomena between windings of azimuthally and radially magnetized tubular objects. The present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...