Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 157(4): 1118-1137, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32998179

RESUMO

Chronic exposure to ethanol is associated with enhanced leakiness in the brain microvessel endothelial cells that form the blood-brain barrier (BBB). As previous studies suggested Wnt/ß-catenin signaling could improve the BBB phenotype of brain endothelial cells, we examined the extent to which Wnt signaling is altered following ethanol exposure, using both a cell culture model of the BBB and mice exposed to ethanol, and the ability of Wnt activation to reverse the permeability effects of ethanol. The human brain endothelial cells, hCMEC/D3, were exposed to ethanol (17-200 mM) for various periods of time (0-96 hr) and Wnt signaling, as well as expression of downstream genes influencing BBB integrity in the cell monolayers were monitored. Determination of Wnt signaling in both brain homogenates and brain microvessels from mice exposed to ethanol was also performed. The effects of ethanol on the permeability of the hCMEC/D3 monolayers were examined using both small molecular weight (sodium fluorescein) and large molecular weight (IRdye 800CW PEG) fluorescent markers. Exposure of hCMEC/D3 to ethanol (50 mM) caused a down-regulation of Wnt/ß-catenin signaling, a reduction of tight junction protein expression and up-regulation of plasmalemma vesicle associated protein (PLVAP). A similar reduction in Wnt/ß-catenin activity in both cortical brain homogenates and isolated cortical cerebral microvessels were observed in mice. Other areas such as cerebellum and striatum displayed as much as 3-6 fold increases in Dkk-1, an endogenous Wnt inhibitor. Ethanol exposure caused significant changes in both sodium fluorescein and IRdye 800CW PEG permeability (2-fold compared to control). The ethanol-induced increases in permeability were attenuated by treatment with known Wnt activators (i.e. LiCl or Wnt3a). Additional screens of CNS active agents with possible Wnt activity indicated fluoxetine could also prevent the permeability effects of ethanol. These studies suggest that ethanol-induced changes in brain microvessel permeability can be reversed through activation of Wnt signaling.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Etanol/toxicidade , Via de Sinalização Wnt/fisiologia , Animais , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , Humanos , Masculino , Camundongos Endogâmicos C57BL
2.
PLoS One ; 14(9): e0222234, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31509576

RESUMO

Prostatic acid phosphatase (PAP), which is secreted by prostate, increases in some diseases such as prostate cancer. PAP is also present in the central nervous system. In this study we reveal that α-synuclein (Snca) gene is co-deleted/mutated in PAP null mouse. It is indicated that mice deficient in transmembrane PAP display neurological alterations. By using immunohistochemistry, cerebellar cortical neurons and zone and stripes pattern were studied in Pap-/- ;Snca-/- mouse cerebellum. We show that the Pap-/- ;Snca-/- cerebellar cortex development appears to be normal. Compartmentation genes expression such as zebrin II, HSP25, and P75NTR show the zone and stripe phenotype characteristic of the normal cerebellum. These data indicate that although aggregation of PAP and SNCA causes severe neurodegenerative diseases, PAP -/- with absence of the Snca does not appear to interrupt the cerebellar architecture development and zone and stripe pattern formation. These findings question the physiological and pathological role of SNCA and PAP during cerebellar development or suggest existence of the possible compensatory mechanisms in the absence of these genes.


Assuntos
Fosfatase Ácida/metabolismo , Córtex Cerebelar/metabolismo , alfa-Sinucleína/metabolismo , Fosfatase Ácida/genética , Fosfatase Ácida/fisiologia , Animais , Cerebelo/metabolismo , Expressão Gênica/genética , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Atividade Motora/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Transcriptoma/genética , alfa-Sinucleína/genética , alfa-Sinucleína/fisiologia
4.
J Pharmacol Exp Ther ; 358(1): 31-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27189965

RESUMO

Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5'-nucleotidase activity. Wild-type (CD73(+/+)) and ecto-5'-nucleotidase-deficient (CD73(-/-)) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73(+/+) mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73(+/+) mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg(2+) conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5'-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73(-/-) mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5'-nucleotidase activity.


Assuntos
5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Tolerância a Medicamentos , Etanol/farmacologia , Hipocampo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , 5'-Nucleotidase/genética , Animais , Etanol/sangue , Hipocampo/enzimologia , Hipocampo/metabolismo , Masculino , Camundongos Knockout , Receptor A1 de Adenosina/genética , Receptor A1 de Adenosina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transmissão Sináptica/efeitos dos fármacos
5.
J Neuroimaging ; 26(4): 403-5, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27082948

RESUMO

2-(18) F-fluorodeoxy-D-glucose (FDG) is a glucose analog that is taken up by cells and phosphorylated. The amount of FDG accumulated by cells is a measure of the rate of glycolysis, which reflects cellular activity. As the levels and actions of the neuromodulator adenosine are dynamically regulated by neuronal activity, this study was designed to test whether endogenous adenosine affects tissue accumulation of FDG as assessed by positron emission tomography (PET) or by postmortem analysis of tissue radioactivity. Rats were given an intraperitoneal injection of the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropyl-xanthine (DPCPX, 3 mg/kg), the adenosine kinase inhibitor ABT-702 (3 mg/kg), or vehicle 10 minutes prior to an intravenous injection of FDG (15.4 ± 0.7 MBq per rat). Rats were then subjected to a 15 minute static PET scan. Reconstructed images were normalized to FDG PET template for rats and standard uptake values (SUVs) were calculated. To examine the regional effect of active treatment compared to vehicle, statistical parametric mapping analysis was performed. Whole-brain FDG uptake was not affected by drug treatment. Significant regional hypometabolism was detected, particularly in cerebellum, of DPCPX- and ABT-702 treated rats, relative to vehicle-treated rats. Thus, endogenous adenosine can affect FDG accumulation although this effect is modest in quiescent rats.


Assuntos
Adenosina/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Animais , Mapeamento Encefálico , Glucose , Glicólise/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Morfolinas/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Pirimidinas/farmacologia , Ratos , Receptor A1 de Adenosina/efeitos dos fármacos , Xantinas/farmacologia
6.
Purinergic Signal ; 10(4): 603-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25129451

RESUMO

ATP is a gliotransmitter released from astrocytes. Extracellularly, ATP is metabolized by a series of enzymes, including ecto-5'-nucleotidase (eN; also known as CD73) which is encoded by the gene 5NTE and functions to form adenosine (ADO) from adenosine monophosphate (AMP). Under ischemic conditions, ADO levels in brain increase up to 100-fold. We used astrocytes cultured from 5NTE (+/+) or 5NTE (-/-) mice to evaluate the role of eN expressed by astrocytes in the production of ADO and inosine (INO) in response to glucose deprivation (GD) or oxygen-glucose deprivation (OGD). We also used co-cultures of these astrocytes with wild-type neurons to evaluate the role of eN expressed by astrocytes in the production of ADO and INO in response to GD, OGD, or N-methyl-D-aspartate (NMDA) treatment. As expected, astrocytes from 5NTE (+/+) mice produced adenosine from AMP; the eN inhibitor α,ß-methylene ADP (AOPCP) decreased ADO formation. In contrast, little ADO was formed by astrocytes from 5NTE (-/-) mice and AOPCP had no significant effect. GD and OGD treatment of 5NTE (+/+) astrocytes and 5NTE (+/+) astrocyte-neuron co-cultures produced extracellular ADO levels that were inhibited by AOPCP. In contrast, these conditions did not evoke ADO production in cultures containing 5NTE (-/-) astrocytes. NMDA treatment produced similar increases in ADO in both 5NTE (+/+) and 5NTE (-/-) astrocyte-neuron co-cultures; dipyridamole (DPR) but not AOPCP inhibited ADO production. These results indicate that eN is prominent in the formation of ADO from astrocytes but in astrocyte-neuron co-cultures, other enzymes or pathways contribute to rising ADO levels in ischemia-like conditions.


Assuntos
5'-Nucleotidase/metabolismo , Adenosina/biossíntese , Astrócitos/metabolismo , Inosina/biossíntese , Neurônios/metabolismo , Animais , Hipóxia Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Isquemia/metabolismo , Camundongos , Camundongos Knockout
7.
Int J Nanomedicine ; 8: 961-70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23494517

RESUMO

BACKGROUND: Aminosilane-coated iron oxide nanoparticles (AmS-IONPs) have been widely used in constructing complex and multifunctional drug delivery systems. However, the biocompatibility and uptake characteristics of AmS-IONPs in central nervous system (CNS)-relevant cells are unknown. The purpose of this study was to determine the effect of surface charge and magnetic field on toxicity and uptake of AmS-IONPs in CNS-relevant cell types. METHODS: The toxicity and uptake profile of positively charged AmS-IONPs and negatively charged COOH-AmS-IONPs of similar size were examined using a mouse brain microvessel endothelial cell line (bEnd.3) and primary cultured mouse astrocytes and neurons. Cell accumulation of IONPs was examined using the ferrozine assay, and cytotoxicity was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS: No toxicity was observed in bEnd.3 cells at concentrations up to 200 µg/mL for either AmS-IONPs or COOH-AmS-IONPs. AmS-IONPs at concentrations above 200 µg/mL reduced neuron viability by 50% in the presence or absence of a magnetic field, while only 20% reductions in viability were observed with COOH-AmS-IONPs. Similar concentrations of AmS-IONPs in astrocyte cultures reduced viability to 75% but only in the presence of a magnetic field, while exposure to COOH-AmS-IONPs reduced viability to 65% and 35% in the absence and presence of a magnetic field, respectively. Cellular accumulation of AmS-IONPs was greater in all cell types examined compared to COOH-AmS-IONPs. Rank order of cellular uptake for AmS-IONPs was astrocytes > bEnd.3 > neurons. Accumulation of COOH-AmS-IONPs was minimal and similar in magnitude in different cell types. Magnetic field exposure enhanced cellular accumulation of both AmS- and COOH-AmS-IONPs. CONCLUSION: Both IONP compositions were nontoxic at concentrations below 100 µg/mL in all cell types examined. At doses above 100 µg/mL, neurons were more sensitive to AmS-IONPs, whereas astrocytes were more vulnerable toward COOH-AmS-IONPs. Toxicity appears to be dependent on the surface coating as opposed to the amount of iron-oxide present in the cell.


Assuntos
Portadores de Fármacos/farmacocinética , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/química , Silanos/farmacocinética , Análise de Variância , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Silanos/química , Silanos/farmacologia
8.
Acta Pharmacol Sin ; 34(1): 60-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23064722

RESUMO

Adenosine is a neuromodulator with its level increasing up to 100-fold during ischemic events, and attenuates the excitotoxic neuronal injury. Adenosine is produced both intracellularly and extracellularly, and nucleoside transport proteins transfer adenosine across plasma membranes. Adenosine levels and receptor-mediated effects of adenosine are regulated by intracellular ATP consumption, cellular release of ATP, metabolism of extracellular ATP (and other adenine nucleotides), adenosine influx, adenosine efflux and adenosine metabolism. Recent studies have used genetically modified mice to investigate the relative contributions of intra- and extracellular pathways for adenosine formation. The importance of cortical or hippocampal neurons as a source or a sink of adenosine under basal and hypoxic/ischemic conditions was addressed through the use of transgenic mice expressing human equilibrative nucleoside transporter 1 (hENT1) under the control of a promoter for neuron-specific enolase. From these studies, we conclude that ATP consumption within neurons is the primary source of adenosine in neuronal cultures, but not in hippocampal slices or in vivo mice exposed to ischemic conditions.


Assuntos
Adenosina/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/irrigação sanguínea , Humanos , Neurônios/metabolismo , Neurônios/patologia , Proteínas de Transporte de Nucleosídeos/metabolismo
9.
Int J Toxicol ; 31(5): 467-76, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23064701

RESUMO

Insect repellent N,N-diethyl-m-toluamide (DEET) and sunscreen oxybenzone have shown a synergistic percutaneous enhancement when applied concurrently. Both compounds are extensively metabolized in vivo into a series of potentially toxic metabolites: 2 metabolites of DEET, N,N-diethyl-m-hydroxymethylbenzamide (DHMB) and N-ethyl-m-toluamide (ET), and 3 metabolites of oxybenzone, 2,4-dihydroxybenzophenone (DHB), 2,2-dihydroxy-4-methoxybenzophenone (DMB), and 2,3,4-trihydroxybenzophenone (THB). In this study, the metabolites were extensively distributed following intravenous and topical skin administration of DEET and oxybenzone in rats. Combined application enhanced the disposition of all DEET metabolites in the liver but did not consistently affect the distribution of oxybenzone metabolites. The DHMB appeared to be the major metabolite for DEET, while THB and its precursor DHB were the main metabolites for oxybenzone. Repeated once-daily topical application for 30 days led to higher concentrations of DEET metabolites in the liver. Hepatoma cell studies revealed a decrease in cellular proliferation from all metabolites as single and combined treatments, most notably at 72 hours. Increased accumulation of DHMB and ET in the liver together with an ability to reduce cellular proliferation at achievable plasma concentrations indicated that simultaneous exposure to DEET and oxybenzone might have the potential to precipitate adverse effects in a rat animal model.


Assuntos
Benzofenonas/farmacocinética , DEET/farmacocinética , Repelentes de Insetos/farmacocinética , Protetores Solares/farmacocinética , Administração Cutânea , Administração Intravenosa , Animais , Benzofenonas/administração & dosagem , Benzofenonas/sangue , Benzofenonas/urina , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DEET/administração & dosagem , DEET/sangue , DEET/urina , Sinergismo Farmacológico , Repelentes de Insetos/administração & dosagem , Repelentes de Insetos/sangue , Repelentes de Insetos/urina , Ratos , Ratos Sprague-Dawley , Absorção Cutânea , Protetores Solares/administração & dosagem , Distribuição Tecidual
10.
PLoS One ; 7(6): e39772, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761898

RESUMO

Adenosine, through activation of its A(1) receptors, has neuroprotective effects during hypoxia and ischemia. Recently, using transgenic mice with neuronal expression of human equilibrative nucleoside transporter 1 (hENT1), we reported that nucleoside transporter-mediated release of adenosine from neurons was not a key mechanism facilitating the actions of adenosine at A(1) receptors during hypoxia/ischemia. The present study was performed to test the importance of CD73 (ecto-5'-nucleotidase) for basal and hypoxic/ischemic adenosine production. Hippocampal slice electrophysiology was performed with CD73(+/+) and CD73(-/-) mice. Adenosine and ATP had similar inhibitory effects in both genotypes, with IC(50) values of approximately 25 µM. In contrast, ATP was a less potent inhibitor (IC(50) = 100 µM) in slices from mice expressing hENT1 in neurons. The inhibitory effects of ATP in CD73(+/+) and CD73(-/-) slices were blocked by the adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and were enhanced by the nucleoside transport inhibitor S-(4-nitrobenzyl)-6-thioinosine (NBTI), consistent with effects that are mediated by adenosine after metabolism of ATP. AMP showed a similar inhibitory effect to ATP and adenosine, indicating that the response to ATP was not mediated by P2 receptors. In comparing CD73(-/-) and CD73(+/+) slices, hypoxia and oxygen-glucose deprivation produced similar depression of synaptic transmission in both genotypes. An inhibitor of tissue non-specific alkaline phosphatase (TNAP) was found to attenuate the inhibitory effects of AMP and ATP, increase basal synaptic activity and reduce responses to oxygen-glucose deprivation selectively in slices from CD73(-/-) mice. These results do not support an important role for CD73 in the formation of adenosine in the CA1 area of the hippocampus during basal, hypoxic or ischemic conditions, but instead point to TNAP as a potential source of extracellular adenosine when CD73 is absent.


Assuntos
5'-Nucleotidase/fisiologia , Trifosfato de Adenosina/farmacologia , Glucose/metabolismo , Hipocampo/efeitos dos fármacos , Hipóxia/fisiopatologia , Oxigênio/metabolismo , Sinapses/efeitos dos fármacos , Adenosina/metabolismo , Animais , Sequência de Bases , Primers do DNA , Hipocampo/fisiologia , Técnicas In Vitro , Concentração Inibidora 50 , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sinapses/fisiologia
11.
Exp Transl Stroke Med ; 4(1): 4, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22409811

RESUMO

BACKGROUND: Activation of adenosine A1 receptors has neuroprotective effects in animal stroke models. Adenosine levels are regulated by nucleoside transporters. In vitro studies showed that neuron-specific expression of human equilibrative nucleoside transporter 1 (hENT1) decreases extracellular adenosine levels and adenosine A1 receptor activity. In this study, we tested the effect of hENT1 expression on cortical infarct size following intracerebral injection of the vasoconstrictor endothelin-1 (ET-1) or saline. METHODS: Mice underwent stereotaxic intracortical injection of ET-1 (1 µl; 400 pmol) or saline (1 µl). Some mice received the adenosine receptor antagonist caffeine (25 mg/kg, intraperitoneal) 30 minutes prior to ET-1. Perfusion and T2-weighted magnetic resonance imaging (MRI) were used to measure cerebral blood flow (CBF) and subsequent infarct size, respectively. RESULTS: ET-1 reduced CBF at the injection site to 7.3 ± 1.3% (n = 12) in hENT1 transgenic (Tg) and 12.5 ± 2.0% (n = 13) in wild type (Wt) mice. At 48 hours following ET-1 injection, CBF was partially restored to 35.8 ± 4.5% in Tg and to 45.2 ± 6.3% in Wt mice; infarct sizes were significantly greater in Tg (9 ± 1.1 mm3) than Wt (5.4 ± 0.8 mm3) mice. Saline-treated Tg and Wt mice had modest decreases in CBF and infarcts were less than 1 mm3. For mice treated with caffeine, CBF values and infarct sizes were not significantly different between Tg and Wt mice. CONCLUSIONS: ET-1 produced greater ischemic injury in hENT1 Tg than in Wt mice. This genotype difference was not observed in mice that had received caffeine. These data indicate that hENT1 Tg mice have reduced ischemia-evoked increases in adenosine receptor activity compared to Wt mice.

12.
Alcohol Clin Exp Res ; 36(7): 1117-25, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22309182

RESUMO

Recent studies have demonstrated that the function of glia is not restricted to the support of neuronal function. Especially, astrocytes are essential for neuronal activity in the brain. Astrocytes actively participate in synapse formation and brain information processing by releasing or uptaking gliotransmitters such as glutamate, d-serine, adenosine 5'-triphosphate (ATP), and adenosine. In the central nervous system, adenosine plays an important role in regulating neuronal activity as well as in controlling other neurotransmitter systems such as GABA, glutamate, and dopamine. Ethanol (EtOH) increases extracellular adenosine levels, which regulates the ataxic and hypnotic/sedative (somnogenic) effects of EtOH. Adenosine signaling is also involved in the homeostasis of major inhibitory/excitatory neurotransmission (i.e., GABA or glutamate) through neuron-glial interactions, which regulates the effect of EtOH and sleep. Adenosine transporters or astrocytic SNARE-mediated transmitter release regulates extracellular or synaptic adenosine levels. Adenosine then exerts its function through several adenosine receptors and regulates glutamate levels in the brain. This review presents novel findings on how neuron-glial interactions, particularly adenosinergic signaling and glutamate uptake activity involving glutamate transporter 1 (GLT1), are implicated in alcoholism and sleep disorders.


Assuntos
Adenosina/metabolismo , Alcoolismo/metabolismo , Comunicação Celular/fisiologia , Ácido Glutâmico/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Transtornos do Sono-Vigília/metabolismo , Alcoolismo/patologia , Animais , Transportador 2 de Aminoácido Excitatório , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Humanos , Neuroglia/fisiologia , Neurônios/fisiologia , Proteínas SNARE/metabolismo , Transtornos do Sono-Vigília/patologia
13.
Biopharm Drug Dispos ; 32(7): 369-79, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21812003

RESUMO

The insect repellent N,N-diethyl-m-toluamide (DEET) and sunscreen oxybenzone (OBZ) have been shown to produce synergistic permeation enhancement when applied concurrently in vitro and in vivo. The disposition of both compounds following intravenous administration (2 mg/kg of DEET or OBZ) and topical skin application (100 mg/kg of DEET and 40 mg/kg of OBZ) was determined in male Sprague-Dawley rats. Pharmacokinetic analysis was also conducted using compartmental and non-compartmental methods. A two-compartment model was deemed the best fit for intravenous administration. The DEET and oxybenzone permeated across the skin to accumulate in blood, liver and kidney following topical skin application. Combined use of DEET and oxybenzone accelerated the disappearance of both compounds from the application site, increased their distribution in the liver and significantly decreased the apparent elimination half-lives of both compounds (p < 0.05). Hepatoma cell studies revealed toxicity from exposure to all treatment concentrations, most notably at 72 h. Although DEET and oxybenzone were capable of mutually enhancing their percutaneous permeation and systemic distribution from topical skin application, there was no evidence of increased hepatotoxic deficits from concurrent application.


Assuntos
Benzofenonas/administração & dosagem , Benzofenonas/farmacocinética , DEET/administração & dosagem , DEET/farmacocinética , Repelentes de Insetos/farmacocinética , Protetores Solares/farmacocinética , Administração Tópica , Animais , Área Sob a Curva , Benzofenonas/sangue , Linhagem Celular Tumoral , DEET/sangue , Meia-Vida , Injeções Intravenosas , Repelentes de Insetos/administração & dosagem , Repelentes de Insetos/sangue , Masculino , Ratos , Ratos Sprague-Dawley , Protetores Solares/administração & dosagem
14.
Behav Brain Res ; 224(1): 44-9, 2011 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-21645551

RESUMO

Adenosine concentrations are regulated by purinergic enzymes and nucleoside transporters. Transgenic mice with neuronal expression of human equilibrative nucleoside transporter 1 (hENT1) have been generated (Parkinson et al., 2009 [7]). The present study tested the hypothesis that mice homozygous and heterozygous for the transgene exhibit differences in hENT1 mRNA and protein expression, and in behavioral responses to caffeine and ethanol, two drugs with adenosine-dependent actions. Real time polymerase chain reaction (PCR) was used to identify mice heterozygous and homozygous for the transgene. Gene expression, determined by real time PCR of cDNA reverse transcribed from cerebral cortex RNA, was 3.8-fold greater in homozygous mice. Protein abundance, determined by radioligand binding assays using 0.14nM [(3)H]S-(4-nitrobenzyl)-6-thioinosine ([(3)H]NBTI), was up to 84% greater in cortex synaptosome membranes from homozygous than from heterozygous mice. In western blots with an antibody specific for hENT1, a protein of approximately 40kDa was strongly labelled in cortex samples from homozygous mice, weakly labelled in samples from heterozygous mice and absent from samples from wild type mice. In behavioral assays, transgenic mice showed a greater response to ethanol and a reduced response to caffeine than wild type littermates; however, no significant differences between heterozygous and homozygous mice were detected. These data indicate that the difference in ENT1 function between wild type and heterozygous mice was greater than that between heterozygous and homozygous mice. Therefore, either heterozygous or homozygous hENT1 transgenic mice can be used in studies of ENT1 regulation of adenosine levels and adenosine dependent behaviors.


Assuntos
Comportamento Animal/fisiologia , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Regulação da Expressão Gênica/genética , Adenosina Quinase/genética , Adenosina Quinase/metabolismo , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Cafeína/farmacologia , Córtex Cerebral/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/genética , Etanol/farmacologia , Humanos , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Tioinosina/análogos & derivados , Tioinosina/farmacocinética , Trítio/farmacocinética
15.
Curr Top Med Chem ; 11(8): 948-72, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21401500

RESUMO

Pyrimidine and purine nucleosides and their derivatives have critical functions and pharmacological applications in the brain. Nucleosides and nucleobases are precursors of nucleotides, which serve as the energy-rich currency of intermediary metabolism and as precursors of nucleic acids. Nucleosides (e.g., adenosine) and nucleotides are key signaling molecules that modulate brain function through interaction with cell surface receptors. Brain pathologies involving nucleosides and their metabolites range from epilepsy to neurodegenerative disorders and psychiatric conditions to cerebrovascular ischemia. Nucleoside analogs are used clinically in the treatment of brain cancer and viral infections. Nucleosides are hydrophilic molecules, and transportability across cell membranes via specialized nucleoside transporter (NT) proteins is a critical determinant of their metabolism and, for nucleoside drugs, their pharmacologic actions. In mammals, there are two types of nucleoside transport process: bidirectional equilibrative processes driven by chemical gradients, and unidirectional concentrative processes driven by sodium (and proton) electrochemical gradients. In mammals, these processes, both of which are present in brain, are mediated by members of two structurally unrelated membrane protein families (ENT and CNT, respectively). In this Chapter, we review current knowledge of cellular, physiological, pathophysiological and therapeutic aspects of ENT and CNT distribution and function in the mammalian brain, including studies with NT inhibitors and new research involving NT knockout and transgenic mice. We also describe recent progress in functional and molecular studies of ENT and CNT proteins, and summarize emerging evidence of other transporter families with demonstrated or potential roles in the transport of nucleosides and their derivatives in the brain.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte de Nucleosídeos/metabolismo , Nucleosídeos , Isoformas de Proteínas/metabolismo , Bombas de Próton/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Antivirais/síntese química , Antivirais/uso terapêutico , Transporte Biológico/fisiologia , Barreira Hematoencefálica/metabolismo , Encéfalo/fisiopatologia , Membrana Celular/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Humanos , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Proteínas de Transporte de Nucleosídeos/classificação , Proteínas de Transporte de Nucleosídeos/genética , Nucleosídeos/metabolismo , Nucleosídeos/farmacologia , Isoformas de Proteínas/genética , Bombas de Próton/genética , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/metabolismo , Transtornos Psicóticos/fisiopatologia , Ratos , Transdução de Sinais , Relação Estrutura-Atividade , Xenopus
16.
J Neurochem ; 118(1): 4-11, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21395582

RESUMO

Activation of adenosine A(1) receptors inhibits excitatory synaptic transmission. Equilibrative nucleoside transporters (ENTs) regulate extracellular adenosine levels; however, the role of neuronal ENTs in adenosine influx and efflux during cerebral ischemia has not been determined. We used mice with neuronal expression of human ENT type 1 and wild type (Wt) littermates to compare responses to in vitro hypoxic or ischemic conditions. Extracellular recordings in the CA1 region of hippocampal slices from transgenic (Tg) mice revealed increased basal synaptic transmission, relative to Wt slices, and an absence of 8-cyclopentyl-1,3-dipropyl-xanthine mediated augmentation of excitatory neurotransmission. Adenosine (10-100 µM) had a reduced potency for inhibiting synaptic transmission in slices from Tg mice; inhibitory concentration 50% values were approximately 25 and 50 µM in Wt and Tg slices, respectively. Potency of the A(1) receptor agonist N(6) -cyclopentyladenosine (1 nM-1 µM) was unchanged. Transient hypoxia or oxygen-glucose deprivation produced greater inhibition of excitatory neurotransmission in slices from Wt than Tg, mice. The ENT1 inhibitor S-(4-nitrobenzyl)-6-thioinosine abolished these differences. Taken together, our data provide evidence that neuronal ENTs reduce hypoxia- and ischemia-induced increases in extracellular adenosine levels and suggest that inhibition of neuronal adenosine transporters may be a target for the treatment of cerebral ischemia.


Assuntos
Adenosina/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Hipocampo/patologia , Hipóxia/patologia , Neurônios/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Animais , Relação Dose-Resposta a Droga , Transportador Equilibrativo 1 de Nucleosídeo/genética , Feminino , Glucose/deficiência , Glutationa/análogos & derivados , Glutationa/farmacologia , Humanos , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Agonistas do Receptor Purinérgico P1/farmacologia , Estatísticas não Paramétricas , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Tioinosina/análogos & derivados , Tioinosina/farmacocinética , Trítio/farmacocinética , Xantinas/farmacologia
17.
Int J Toxicol ; 29(6): 594-603, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20959613

RESUMO

Insect repellent N,N-diethyl-m-toluamide (DEET) and sunscreen oxybenzone are capable of enhancing skin permeation of each other when applied simultaneously. We carried out a cellular study in rat astrocytes and neurons to assess cell toxicity of DEET and oxybenzone and a 30-day study in Sprague-Dawley rats to characterize skin permeation and tissue disposition of the compounds. Cellular toxicity occurred at 1 µg/mL for neurons and 7-day treatment for astrocytes and neurons. DEET and oxybenzone permeated across the skin to accumulate in blood, liver, and brain after repeated topical applications. DEET disappeared from the application site faster than oxybenzone. Combined application enhanced the disposition of DEET in liver. No overt sign of behavioral toxicity was observed from several behavioral testing protocols. It was concluded that despite measurable disposition of the study compounds in vivo, there was no evidence of neurotoxicological deficits from repeated topical applications of DEET, oxybenzone, or both.


Assuntos
Benzofenonas/farmacocinética , DEET/farmacocinética , Repelentes de Insetos/farmacocinética , Pele/efeitos dos fármacos , Protetores Solares/farmacocinética , Administração Tópica , Animais , Astrócitos/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Benzofenonas/administração & dosagem , Benzofenonas/sangue , Benzofenonas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , DEET/administração & dosagem , DEET/sangue , DEET/toxicidade , Sinergismo Farmacológico , Feminino , Feto/citologia , Meia-Vida , Repelentes de Insetos/administração & dosagem , Repelentes de Insetos/sangue , Repelentes de Insetos/toxicidade , Masculino , Neurônios/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Pele/metabolismo , Protetores Solares/administração & dosagem , Protetores Solares/toxicidade , Distribuição Tecidual
18.
J Neurochem ; 109(2): 562-72, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19222701

RESUMO

Transgenic mice that express human equilibrative nucleoside transporter subtype 1 (hENT1) under the control of a neuron-specific enolase promoter have been generated. Southern blot and PCR revealed the presence of the transgene in five founder mice. Mice from each founder line were examined by reverse transcriptase (RT)-PCR and found to express hENT1 in RNA isolated from whole brain, cerebral cortex, striatum, hippocampus, and cerebellum but not liver, kidney, heart, lung or skeletal muscle. Cortical synaptosomes prepared from transgenic mice had significantly increased [(3)H]adenosine uptake and [(3)H]nitrobenzylthioinosine binding, relative to samples from wild-type mice. In behavioral tests, transgenic mice had altered responses to caffeine and ethanol, two drugs that inhibit and enhance, respectively, adenosine receptor activity. Caffeine-induced locomotor stimulation was attenuated whereas the hypnotic effect of ethanol was enhanced in transgenic mice. Caffeine was more potent in inhibiting ethanol-induced motor incoordination in wild-type than in transgenic mice. No differences in expression of mouse genes for adenosine receptors, nucleoside transporters, or purine metabolizing enzymes were detected by RT-PCR analyses. These data indicate that expression of hENT1 in neurons does not trigger adaptive changes in expression of adenosine-related genes. Instead, hENT1 expression affects dynamic changes in endogenous adenosine levels, as revealed by altered behavioral responses to drugs that affect adenosine receptor signalling.


Assuntos
Transportador Equilibrativo 1 de Nucleosídeo/biossíntese , Transportador Equilibrativo 1 de Nucleosídeo/genética , Regulação da Expressão Gênica/fisiologia , Neurônios/metabolismo , Adenosina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Cafeína/administração & dosagem , Cafeína/antagonistas & inibidores , Transportador Equilibrativo 1 de Nucleosídeo/fisiologia , Etanol/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Células PC12 , Ratos , Receptores Purinérgicos P1/biossíntese , Receptores Purinérgicos P1/genética , Regulação para Cima/genética
19.
Can J Physiol Pharmacol ; 87(10): 850-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20052011

RESUMO

The nucleoside adenosine (ADO) is a neuromodulator in brain. ADO and its metabolite inosine (INO) have been shown to increase cell viability in stroke models. During ischemia, extracellular levels of both ADO and INO are increased. In this study, we treated rat cortical neurons with N-methyl-D-aspartate (NMDA) to initiate excitotoxicity and then investigated the mechanisms of ADO and INO release. NMDA induced a significant increase in ADO and INO production. The effect of NMDA receptor antagonists on NMDA-evoked ADO and INO release was examined. MK-801 (1 micromol/L), a potent antagonist that lacks receptor subunit selectivity, completely blocked evoked release of both ADO and INO. Memantine (10 micromol/L), a lower affinity antagonist that also lacks subunit selectivity, blocked INO, but not ADO, release. Ifenprodil (10 micromol/L), an inhibitor selective for NMDA receptors containing the NR2B subunit, completely blocked evoked ADO and INO release. NVP-AAM077 (NVP, 0.4 micromol/L), an inhibitor selective for NMDA receptors containing the NR2A subunit, did not significantly block evoked release of either ADO or INO. Removal of extracellular Ca2+ abolished NMDA-evoked release of both ADO and INO. BAPTA (25 micromol/L), which chelates intracellular Ca2+, had no significant effect on either ADO or INO release unless extracellular Ca2+ was also removed. Inhibitors of Ca2+/calmodulin-dependent protein kinase II (CaMKII) prevented NMDA-evoked ADO and INO release and decreased nucleoside transporter function. These data indicate that NMDA-evoked ADO and INO release is dependent on subunit composition of NMDA receptors. As well, NMDA-evoked ADO and INO release requires nucleoside transporters and extracellular Ca2+ and is enhanced by activation of CaMKII.


Assuntos
Adenosina/metabolismo , Cálcio/fisiologia , Inosina/metabolismo , N-Metilaspartato/farmacologia , Neurônios/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Quelantes/farmacologia , Maleato de Dizocilpina/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Neurônios/efeitos dos fármacos , Piperidinas/farmacologia , Purinas/farmacologia , Quinoxalinas/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia
20.
J Neurosci Res ; 86(15): 3447-55, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18627033

RESUMO

Adenosine (ADO) is an important neuromodulator in brain. During pathophysiological events such as stroke or brain trauma, ADO levels can increase up to 100-fold. We tested the hypothesis that astrocytes are important for the removal of ADO produced by neurons and for the metabolism of ADO to inosine (INO) and hypoxanthine (HX). We used four different cell culture preparations: cortical neurons, cortical astrocytes, cocultures of neurons and astrocytes, and neurons transiently cocultured with astrocytes on transwell filters. These cultures were treated with N-methyl-D-aspartate (NMDA), because NMDA receptor activation is a common factor among many causes of neurotoxicity. NMDA significantly increased extracellular ADO, INO, and HX levels from cultured cortical neurons by 3-, 3.5-, and 2-fold, respectively. In cocultures, NMDA significantly increased INO, by 4.5-fold, and HX, by 3-fold, but did not increase ADO levels. There was no NMDA-evoked purine production from astrocytes. Inhibition of purine nucleoside phosphorylase (PNP) significantly decreased HX production from both neurons and cocultures to less than 30% of control levels. The transient addition of astrocytes to neurons during NMDA treatment significantly increased HX and decreased ADO levels compared with neurons alone. In addition, increasing the number of astrocytes was directly correlated with an increased capacity of ADO metabolism to INO and HX. In conclusion, NMDA evoked the production of ADO, INO, and HX from neurons. In the presence of astrocytes, there was significantly less ADO and more HX produced. Thus, ADO produced by neurons is subject to metabolism by astrocytes, a process that may limit its neuromodulatory actions.


Assuntos
Adenosina/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Hipoxantina/metabolismo , Neurônios/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Agonistas de Aminoácidos Excitatórios/farmacologia , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Purina-Núcleosídeo Fosforilase/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...