Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 152(5): 051102, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32035470

RESUMO

In this work, the adsorption height of Ag adatoms on the Fe3O4(001) surface after exposure to CO was determined using normal incidence x-ray standing waves. The Ag adatoms bound to CO (Ag1 CO) are found to be pulled out of the surface to an adsorption height of 1.15 Å ± 0.08 Å, compared to the previously measured height of 0.96 Å ± 0.03 Å for bare Ag adatoms and clusters. Utilizing DFT+vdW+U calculations with the substrate unit cell dimension fixed to the experimental value, the predicted adsorption height for Ag1 CO was 1.16 Å, in remarkably good agreement with the experimental results.

2.
Phys Chem Chem Phys ; 20(24): 16469-16476, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29882949

RESUMO

The normal incidence X-ray standing wave (NIXSW) technique has been used to follow the evolution of the adsorption geometry of Ni adatoms on the Fe3O4(001)-(√2 × âˆš2)R45° surface as a function of temperature. Two primary surface region sites are identified: a bulk-continuation tetrahedral site and a sub-surface octahedral site, the latter site being preferred at higher annealing temperatures. The ease of incorporation is linked to the presence of subsurface cation vacancies in the (√2 × âˆš2)R45° reconstruction and is consistent with the preference for octahedral coordination observed in the spinel compound NiFe2O4.

3.
Science ; 346(6214): 1215-8, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25477458

RESUMO

Iron oxides play an increasingly prominent role in heterogeneous catalysis, hydrogen production, spintronics, and drug delivery. The surface or material interface can be performance-limiting in these applications, so it is vital to determine accurate atomic-scale structures for iron oxides and understand why they form. Using a combination of quantitative low-energy electron diffraction, scanning tunneling microscopy, and density functional theory calculations, we show that an ordered array of subsurface iron vacancies and interstitials underlies the well-known (√2 × âˆš2)R45° reconstruction of Fe3O4(001). This hitherto unobserved stabilization mechanism occurs because the iron oxides prefer to redistribute cations in the lattice in response to oxidizing or reducing environments. Many other metal oxides also achieve stoichiometry variation in this way, so such surface structures are likely commonplace.

4.
Phys Rev Lett ; 107(1): 016105, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21797556

RESUMO

Complementary but independent medium-energy and low-energy ion scattering studies of the (0001) surfaces of V(2)O(3) films grown on Pd(111), Au(111) and Cu(3)Au(100) reveal a reconstructed full O(3)-layer termination creating a VO(2) surface trilayer. This structure is fully consistent with previous calculations based on thermodynamic equilibrium at the surface during growth, but contrasts with previous suggestions that the surface termination comprises a complete monolayer of vanadyl (V=O) species.

5.
Phys Rev Lett ; 102(9): 096103, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19392537

RESUMO

The energy spectrum associated with scattering of 100 keV H+ ions from the outermost few atomic layers of Cu(111) in different scattering geometries provides direct evidence of trajectory-dependent electronic energy loss. Theoretical simulations, combining standard Monte Carlo calculations of the elastic scattering trajectories with coupled-channel calculations to describe inner-shell ionization and excitation as a function of impact parameter, reproduce the effects well and provide a means for far more complete analysis of medium-energy ion scattering data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...