Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 167: 112433, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32771862

RESUMO

The aggregation of α-synuclein is a critical event in the pathogenesis of neurological diseases, such as Parkinson or Alzheimer. Here, we present a label-free sensor based on an Electrolyte-Gated Organic Field-Effect Transistor (EGOFET) integrated with microfluidics that allows for the detection of amounts of α-synuclein in the range from 0.25 pM to 25 nM. The lower limit of detection (LOD) measures the potential of our integrated device as a tool for prognostics and diagnostics. In our device, the gate electrode is the effective sensing element as it is functionalised with anti-(α-synuclein) antibodies using a dual strategy: i) an amino-terminated self-assembled monolayer activated by glutaraldehyde, and ii) the His-tagged recombinant protein G. In both approaches, comparable sensitivity values were achieved, featuring very low LOD values at the sub-pM level. The microfluidics engineering is central to achieve a controlled functionalisation of the gate electrode and avoid contamination or physisorption on the organic semiconductor. The demonstrated sensing architecture, being a disposable stand-alone chip, can be operated as a point-of-care test, but also it might represent a promising label-free tool to explore in-vitro protein aggregation that takes place during the progression of neurodegenerative illnesses.


Assuntos
Técnicas Biossensoriais , Transistores Eletrônicos , alfa-Sinucleína , Eletrólitos , Microfluídica , alfa-Sinucleína/análise
2.
Anal Chem ; 92(13): 9330-9337, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483968

RESUMO

Electrolyte gated organic transistors can operate as powerful ultrasensitive biosensors, and efforts are currently devoted to devising strategies for reducing the contribution of hardly avoidable, nonspecific interactions to their response, to ultimately harness selectivity in the detection process. We report a novel lab-on-a-chip device integrating a multigate electrolyte gated organic field-effect transistor (EGOFET) with a 6.5 µL microfluidics set up capable to provide an assessment of both the response reproducibility, by enabling measurement in triplicate, and of the device selectivity through the presence of an internal reference electrode. As proof-of-concept, we demonstrate the efficient operation of our pentacene based EGOFET sensing platform through the quantification of tumor necrosis factor alpha with a detection limit as low as 3 pM. Sensing of inflammatory cytokines, which also include TNFα, is of the outmost importance for monitoring a large number of diseases. The multiplexable organic electronic lab-on-chip provides a statistically solid, reliable, and selective response on microliters sample volumes on the minutes time scale, thus matching the relevant key-performance indicators required in point-of-care diagnostics.


Assuntos
Técnicas Biossensoriais/métodos , Fator de Necrose Tumoral alfa/análise , Aptâmeros de Peptídeos/química , Aptâmeros de Peptídeos/metabolismo , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Técnicas Biossensoriais/instrumentação , Eletrodos , Ouro/química , Humanos , Dispositivos Lab-On-A-Chip , Limite de Detecção , Transistores Eletrônicos , Fator de Necrose Tumoral alfa/metabolismo
3.
Small ; 14(10)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29280286

RESUMO

A switchable electrode, which relies on an indium-tin oxide conductive substrate coated with a self-assembled monolayer terminated with an anthraquinone group (AQ), is reported as an electrowetting system. AQ electrochemical features confer the capability of yielding a significant modulation of surface wettability as high as 26° when its redox state is switched. Hence, an array of planar electrodes for droplets actuation is fabricated and integrated in a microfluidic device to perform mixing and dispensing on sub-nanoliter scale. Vehiculation of cells across microfluidic compartments is made possible by taking full advantage of surface electrowetting in culture medium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...