Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 99(8)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37481697

RESUMO

Truffle growers devote great efforts to improve black truffle productivity, developing agronomic practices such as 'truffle nests' (peat amendments that are supplemented with truffle spore inoculum). It has been hypothesized that improved fruiting associated with nests is linked to stimulation of truffle mycelia previously established in soil or to changes generated in soil fungal community. To assess this, we used real-time PCR to quantify black truffle extraradical mycelium during 2 years after nests installation. We also characterized the fungal community via high-throughput amplicon sequencing of the ITS region of rRNA genes. We found that neither the abundance of truffle mycelium in nests nor in the soil-nest interphase was higher than in the bulk soil, which indicates that nests do not improve mycelial growth. The fungal community in nests showed lower richness and Shannon index and was compositionally different from that of soil, which suggests that nests may act as an open niche for fungal colonization that facilitates truffle fruiting. The ectomycorrhizal fungal community showed lower richness in nests. However, no negative relationships between amount of truffle mycelium and reads of other ectomycorrhizal fungi were found, thus countering the hypothesis that ectomycorrhizal competition plays a role in the nest effect.


Assuntos
Ascomicetos , Micobioma , Micorrizas , Microbiologia do Solo , Ascomicetos/fisiologia , Solo
2.
Biology (Basel) ; 12(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37106828

RESUMO

The high value of black truffle recompenses the slow growth of the fungus when established in the field. Adding a secondary crop, such as medicinal and aromatic plants (MAPs), could further enhance the sustainability of truffle production agro-forest systems. The dual cultures of ectomycorrhizal truffle-oak seedlings and MAPs (lavender, thyme, and sage) previously inoculated and non-inoculated with native arbuscular mycorrhizal fungi (AMF), were established to evaluate plant-fungi relationships. After 12 months in a shadehouse, plants' growth, mycorrhizal colonization, and extraradical soil mycelium (both of Tuber melanosporum and AMF) were measured. Overall, truffle-oaks' growth was negatively affected by the presence of MAPs, especially when inoculated with AMF. In turn, the presence of truffle-oaks barely affected the co-cultured MAPs, and only lavenders showed a significant growth reduction. All AMF-inoculated MAPs showed higher shoot and root biomass than non-inoculated ones. Compared to truffle-oaks growing alone, the presence of co-cultured MAPs, especially when they were AMF-inoculated, significantly decreased both the ectomycorrhizas and soil mycelium of T. melanosporum. These results reveal the strong competition between AMF and T. melanosporum and warn about the need for the protection of intercropping plants and their associated symbiotic fungi to avoid reciprocal counterproductive effects in mixed truffle-oak-AMF-MAP plantations.

3.
Nutrients ; 13(11)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34836223

RESUMO

In recent years, food ingredients rich in bioactive compounds have emerged as candidates to prevent excess adiposity and other metabolic complications characteristic of obesity, such as low-grade inflammation and oxidative status. Among them, fungi have gained popularity for their high polysaccharide content and other bioactive components with beneficial activities. Here, we use the C. elegans model to investigate the potential activities of a Grifola frondosa extract (GE), together with the underlying mechanisms of action. Our study revealed that GE represents an important source of polysaccharides and phenolic compounds with in vitro antioxidant activity. Treatment with our GE extract, which was found to be nongenotoxic through a SOS/umu test, significantly reduced the fat content of C. elegans, decreased the production of intracellular ROS and aging-lipofuscin pigment, and increased the lifespan of nematodes. Gene expression and mutant analyses demonstrated that the in vivo anti-obesity and antioxidant activities of GE were mediated through the daf-2/daf-16 and skn-1/nrf-2 signalling pathways, respectively. Taken together, our results suggest that our GE extract could be considered a potential functional ingredient for the prevention of obesity-related disturbances.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Ligação a DNA/metabolismo , Suplementos Nutricionais , Fatores de Transcrição Forkhead/metabolismo , Grifola , Longevidade , Fatores de Transcrição/metabolismo , Tecido Adiposo/metabolismo , Envelhecimento , Animais , Fármacos Antiobesidade/farmacologia , Antioxidantes/farmacologia , Misturas Complexas/farmacologia , Lipofuscina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
4.
Fungal Biol ; 125(6): 469-476, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34024594

RESUMO

Soil sampling is a critical step affecting perceived fungal diversity, however sampling optimization for high-throughput-DNA sequencing studies have never been tested in Mediterranean forest ecosystems. We identified the minimum number of pooled samples needed to obtain a reliable description of fungal communities in terms of diversity and composition in three different Mediterranean forests (pine, oak, and mixed-pine-oak). Twenty soil samples were randomly selected in each of the three plots per type. Samples obtained in 100 m2 plots were pooled to obtain mixtures of 3, 6, 10, 15, 20 samples, and sequenced using Illumina MiSeq of fungal ITS2 amplicons. Pooling three soil samples in Pinus and Quercus stands provided consistent richness estimations, while at least six samples were needed in mixed-stands. ß-diversity decreased with increasing sample pools in monospecific-stands, while there was no effect of sample pool size on mixed-stands. Soil sample pooling had no effect over species composition. We estimate that three samples would be already optimal to describe fungal richness and composition in Mediterranean pure stands, while at least six samples would be needed in mixed stands.


Assuntos
Biodiversidade , Monitoramento Ambiental , Florestas , Fungos , Microbiologia do Solo , DNA Fúngico/genética , Monitoramento Ambiental/métodos , Fungos/classificação , Fungos/genética , Pinus/microbiologia , Quercus/microbiologia
5.
Mycorrhiza ; 30(6): 725-733, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33047180

RESUMO

The cultivation of the ectomycorrhizal fungus Tuber melanosporum has considerably spread in recent years throughout the world. During the first years of truffle cultivation, weed control is a key practice to improve the establishment of host trees and the proliferation of the fungus in the soil. Glyphosate is nowadays the most commonly used herbicide in Spanish truffle orchards. We explored the effect of glyphosate on the proliferation of T. melanosporum mycorrhizae, on extraradical mycelium and on the inoculum potential of T. melanosporum spores in greenhouse experiments using Quercus ilex seedlings as host plants. No detrimental effect on the secondary infection of T. melanosporum was found after three sequential glyphosate applications in young seedlings during one vegetative period. Instead, a change in the distribution of fine roots and T. melanosporum mycorrhizae along soil depth was observed. On the other hand, results indicate that high application rates of glyphosate hinder the infectivity of T. melanosporum spore inoculum, without apparent impact on the host performance. Our results suggest that glyphosate has the potential to jeopardise the role of the soil spore bank as inoculum source for the colonisation of new roots, also raising the question of whether glyphosate could hinder the presumed role of spores in sexual mating.


Assuntos
Ascomicetos , Micorrizas , Quercus , Glicina/análogos & derivados , Microbiologia do Solo , Controle de Plantas Daninhas , Glifosato
6.
New Phytol ; 220(4): 1211-1221, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29757469

RESUMO

Soil microclimate is a potentially important regulator of the composition of plant-associated fungal communities in climates with significant drought periods. Here, we investigated the spatio-temporal dynamics of soil fungal communities in a Mediterranean Pinus pinaster forest in relation to soil moisture and temperature. Fungal communities in 336 soil samples collected monthly over 1 year from 28 long-term experimental plots were assessed by PacBio sequencing of ITS2 amplicons. Total fungal biomass was estimated by analysing ergosterol. Community changes were analysed in the context of functional traits. Soil fungal biomass was lowest during summer and late winter and highest during autumn, concurrent with a greater relative abundance of mycorrhizal species. Intra-annual spatio-temporal changes in community composition correlated significantly with soil moisture and temperature. Mycorrhizal fungi were less affected by summer drought than free-living fungi. In particular, mycorrhizal species of the short-distance exploration type increased in relative abundance under dry conditions, whereas species of the long-distance exploration type were more abundant under wetter conditions. Our observations demonstrate a potential for compositional and functional shifts in fungal communities in response to changing climatic conditions. Free-living fungi and mycorrhizal species with extensive mycelia may be negatively affected by increasing drought periods in Mediterranean forest ecosystems.


Assuntos
Florestas , Fungos/fisiologia , Microclima , Micobioma , Pinus/microbiologia , Microbiologia do Solo , Solo/química , Biomassa , Modelos Lineares
7.
Mycorrhiza ; 27(6): 565-576, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28547294

RESUMO

Seasonal dynamics of black truffle (Tuber melanosporum) extraradical mycelium as well as the associated mycorrhizal community have been evaluated in a 16-year-old plantation with productive and non-productive trees. Mycelium biomass was seasonally quantified by real-time PCR over two consecutive years and the correlation with environmental variables explored. Extraradical mycelium biomass varied seasonally and between the two consecutive years, being correlated with the precipitation that occurred 1 month before sampling. In addition, productive trees had more mycelium in the brûlé area than non-productive trees did. The ectomycorrhizal community composition inside the burnt areas was seasonally evaluated during a year. Ten mycorrhizal morphotypes were detected; T. melanosporum was the most abundant in productive and non-productive trees. Black truffle mycorrhizas were more abundant (mycorrhizal tips per unit of soil volume) in productive trees, and no seasonal variation was observed. The occurrence of black truffle mycorrhizas was significantly and positively correlated with the biomass of extraradical mycelium. The mycorrhizal community within the brûlé areas was significantly different between productive and non-productive trees, and no variation was detected between seasons. The assessment of the fungal vegetative structures in a mature plantation is of paramount importance to develop trufficulture methods based on the knowledge of the biological cycle of the fungus and its relationships with the associated ectomycorrhizal communities.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Micorrizas/fisiologia , Estações do Ano , Microbiologia do Solo , Micélio/crescimento & desenvolvimento
8.
Appl Environ Microbiol ; 83(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28432095

RESUMO

Obtaining reliable and representative mushroom production data requires time-consuming sampling schemes. In this paper, we assessed a simple methodology to detect mushroom emergence by trapping the fungal spores of the fruiting body community in plots where mushroom production was determined weekly. We compared the performance of filter paper traps with that of funnel traps and combined these spore trapping methods with species-specific quantitative real-time PCR and Illumina MiSeq to determine the spore abundance. Significantly more MiSeq proportional reads were generated for both ectomycorrhizal and saprotrophic fungal species using filter traps than were obtained using funnel traps. The spores of 37 fungal species that produced fruiting bodies in the study plots were identified. Spore community composition changed considerably over time due to the emergence of ephemeral fruiting bodies and rapid spore deposition (lasting from 1 to 2 weeks), which occurred in the absence of rainfall events. For many species, the emergence of epigeous fruiting bodies was followed by a peak in the relative abundance of their airborne spores. There were significant positive relationships between fruiting body yields and spore abundance in time for five of seven fungal species. There was no relationship between fruiting body yields and their spore abundance at plot level, indicating that some of the spores captured in each plot were arriving from the surrounding areas. Differences in fungal detection capacity by spore trapping may indicate different dispersal ability between fungal species. Further research can help to identify the spore rain patterns for most common fungal species.IMPORTANCE Mushroom monitoring represents a serious challenge in economic and logistical terms because sampling approaches demand extensive field work at both the spatial and temporal scales. In addition, the identification of fungal taxa depends on the expertise of experienced fungal taxonomists. Similarly, the study of fungal dispersal has been constrained by technological limitations, especially because the morphological identification of spores is a challenging and time-consuming task. Here, we demonstrate that spores from ectomycorrhizal and saprotrophic fungal species can be identified using simple spore traps together with either MiSeq fungus-specific amplicon sequencing or species-specific quantitative real-time PCR. In addition, the proposed methodology can be used to characterize the airborne fungal community and to detect mushroom emergence in forest ecosystems.


Assuntos
Agaricales/isolamento & purificação , Técnicas de Tipagem Micológica/métodos , Esporos Fúngicos/isolamento & purificação , Agaricales/classificação , Agaricales/genética , Agaricales/crescimento & desenvolvimento , Carpóforos/classificação , Carpóforos/genética , Carpóforos/crescimento & desenvolvimento , Carpóforos/isolamento & purificação , Técnicas de Tipagem Micológica/instrumentação , Reação em Cadeia da Polimerase em Tempo Real , Microbiologia do Solo , Esporos Fúngicos/classificação , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento
9.
Mycorrhiza ; 26(8): 799-808, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27317489

RESUMO

Drying soil samples before DNA extraction is commonly used for specific fungal DNA quantification and metabarcoding studies, but the impact of different drying procedures on both the specific fungal DNA quantity and the fungal community composition has not been analyzed. We tested three different drying procedures (freeze-drying, oven-drying, and room temperature) on 12 different soil samples to determine (a) the soil mycelium biomass of the ectomycorrhizal species Lactarius vinosus using qPCR with a specifically designed TaqMan® probe and (b) the fungal community composition and diversity using the PacBio® RS II sequencing platform. Mycelium biomass of L. vinosus was significantly greater in the freeze-dried soil samples than in samples dried at oven and room temperature. However, drying procedures had no effect on fungal community composition or on fungal diversity. In addition, there were no significant differences in the proportions of fungi according to their functional roles (moulds vs. mycorrhizal species) in response to drying procedures. Only six out of 1139 operational taxonomic units (OTUs) had increased their relative proportions after soil drying at room temperature, with five of these OTUs classified as mould or yeast species. However, the magnitude of these changes was small, with an overall increase in relative abundance of these OTUs of approximately 2 %. These results suggest that DNA degradation may occur especially after drying soil samples at room temperature, but affecting equally nearly all fungi and therefore causing no significant differences in diversity and community composition. Despite the minimal effects caused by the drying procedures at the fungal community composition, freeze-drying resulted in higher concentrations of L. vinosus DNA and prevented potential colonization from opportunistic species.


Assuntos
Basidiomycota/genética , DNA Fúngico/genética , Micorrizas/genética , Microbiologia do Solo , Solo/química , Água/química
10.
Mycorrhiza ; 26(3): 227-36, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26458929

RESUMO

Truffles are edible hypogeous ascomycetes highly appreciated worldwide, especially the black truffle (Tuber melanosporum Vittad.). In recent decades, the cultivation of the black truffle has expanded across the Mediterranean climate regions in and outside its native range. Members of the Thelephoraceae (Thelephorales, Agaricomycetes, Basidiomycota) are commonly found in truffle plantations, but their co-occurrence with Tuber species and other members of the fungal community has been scarcely reported. Thelephoraceae is one of the most represented families of the ectomycorrhizal fungal community in boreal and Mediterranean forests. To reveal the diversity of these fungi in T. melanosporum-cultivated plantations, ten orchards located in the Navarra region (Northern Spain) were surveyed for 2 years. Morphological and molecular approaches were used to detect and identify the Thelephoraceae ectomycorrhizas present in those plantations. Ten different mycorrhizal types were detected and described. Four of them were morphologically identified as Tomentella galzinii, Quercirhiza cumulosa, Q. squamosa, and T39 Thelephoraceae type. Molecular analyses revealed 4-6 operational taxonomic units (OTUs), depending on the nucleotide database used, but similarities remained under 95 % and no clear species assignments could be done. The results confirm the diversity and abundance of this fungal family in the ectomycorrhizal community of black truffle plantations, generally established in Mediterranean areas. The occurrence and relative abundance of Thelephoraceae ectomycorrhizas is discussed in relation to their possible influence on truffle production.


Assuntos
Ascomicetos/fisiologia , Basidiomycota/classificação , Basidiomycota/isolamento & purificação , Biodiversidade , Micorrizas/classificação , Micorrizas/isolamento & purificação , Sequência de Bases , Basidiomycota/genética , DNA Fúngico/análise , DNA Fúngico/genética , DNA Ribossômico/análise , DNA Ribossômico/genética , Florestas , Região do Mediterrâneo , Micorrizas/genética , Filogenia , Microbiologia do Solo , Espanha
11.
Environ Microbiol ; 17(8): 2747-61, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25522815

RESUMO

In the Mediterranean region, patches of vegetation recovering from disturbance and transiently dominated by shrubs produce one of the world's most prized fungi, the black truffle (Tuber melanosporum). In these successional plant communities, we have fragmentary knowledge of the distribution of T. melanosporum in space among ectomycorrhizal (ECM) host species and in time. Molecular identification of hosts (Restriction Fragment Length Polymorphism) and fungi (Internal Transcribed Spacer sequencing) and quantification of T. melanosporum mycelium (quantitative Polymerase Chain Reaction) were employed to evaluate the presence of T. melanosporum on four dominant ECM host species (Quercus ilex, Quercus  coccifera, Arbutus unedo, Cistus albidus) and the extent to which their respective ECM communities shared fungal diversity, over the course of development of truffle grounds, from recent unproductive brûlés to senescent ones where production has stopped. We found that truffle grounds host rich communities in which multi-host fungal species dominate in frequency. When considering both ECM tips and soil mycelia, we documented a dynamic and spatially heterogeneous pattern of T. melanosporum distribution in soils and a presence of ECM tips restricted to Q. ilex roots. This study advances our knowledge of the ecology of T. melanosporum, and provides insight into the extent of ECM fungal sharing among plant species that dominate Mediterranean landscapes.


Assuntos
Ascomicetos/genética , Cistus/microbiologia , Carpóforos/genética , Micorrizas , Quercus/microbiologia , Biodiversidade , DNA Intergênico/genética , Região do Mediterrâneo , Micélio/genética , Polimorfismo de Fragmento de Restrição , Reação em Cadeia da Polimerase em Tempo Real , Microbiologia do Solo
12.
Mycorrhiza ; 24 Suppl 1: S5-18, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24424507

RESUMO

Since the first truffle plantations were established in France, Italy and other parts in the world, many studies have been carried out to improve their productivity and sustainability. Success of plantations is clearly related to the mycorrhizal status of the host trees over the years, from inoculated seedlings to truffle-producing trees. The experience gained in monitoring the ectomycorrhizal fungus status in cultivated truffle grounds has allowed us to develop an extensive catalogue of the ectomycorrhizal fungi present in truffle plantations. Herein, we summarize fungal community data from 85 references that represent different truffle studies in natural habitats and plantations. Approximately 25% of the ectomycorrhizae reported in the 85 references are common to most of the studies. In general, more fungal species are detected in productive plantations than in the non-productive ones. Truffle plantations display a diverse ectomycorrhizal fungal community, in which species of the genus Tuber are well represented. Tuber rufum and some members of Boletales are typically restricted to productive truffle plots. On the other hand, Hebeloma, Laccaria and Russula species are mostly associated with unproductive plots. Ectomycorrhizae belonging to Thelephoraceae are frequently found in mature truffle orchards but do not seem to affect sporocarp production. Several biotic and abiotic factors affect the ectomycorrhizal fungus communities associated with truffle orchards. Among them are plantation age, host species and its growth, the surrounding environment (particularly the presence of other ectomycorrhizal hosts), and plantation management. Understanding the ectomycorrhizal fungal communities inhabiting different plantations may give us clues about the dynamics of the targeted truffles and the possibility of identifying mycorrhizal fungal species that are good indicators of successful truffle plantations.


Assuntos
Ascomicetos/fisiologia , Micorrizas/fisiologia , Agricultura/métodos , Ascomicetos/classificação , Ascomicetos/crescimento & desenvolvimento , Biodiversidade , Micorrizas/classificação , Micorrizas/crescimento & desenvolvimento , Microbiologia do Solo , Árvores/microbiologia
13.
Mycorrhiza ; 23(5): 391-402, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23392533

RESUMO

The annual belowground dynamics of extraradical soil mycelium and sporocarp production of two ectomycorrhizal fungi, Boletus edulis and Lactarius deliciosus, have been studied in two different pine forests (Pinar Grande and Pinares Llanos, respectively) in Soria (central Spain). Soil samples (five per plot) were taken monthly (from September 2009 to August 2010 in Pinar Grande and from September 2010 to September 2011 in Pinares Llanos) in eight permanent plots (four for each site). B. edulis and L. deliciosus extraradical soil mycelium was quantified by real-time polymerase chain reaction, with DNA extracted from soil samples, using specific primers and TaqMan® probes. The quantities of B. edulis soil mycelium did not differ significantly between plots, but there was a significant difference over time with a maximum in February (0.1576 mg mycelium/g soil) and a minimum in October (0.0170 mg mycelium/g soil). For L. deliciosus, significant differences were detected between plots and over time. The highest amount of mycelium was found in December (1.84 mg mycelium/g soil) and the minimum in February (0.0332 mg mycelium/g soil). B. edulis mycelium quantities were positively correlated with precipitation of the current month and negatively correlated with the mean temperature of the previous month. Mycelium biomass of L. deliciosus was positively correlated with relative humidity and negatively correlated with mean temperature and radiation. No significant correlation between productivity of the plots with the soil mycelium biomass was observed for any of the two species. No correlations were found between B. edulis sporocarp production and weather parameters. Sporocarp production of L. deliciosus was positively correlated with precipitation and relative humidity and negatively correlated with maximum and minimum temperatures. Both species have similar distribution over time, presenting an annual dynamics characterized by a seasonal variability, with a clear increase on the amounts of biomass during the coldest months of the year. Soil mycelial dynamics of both species are strongly dependent on the weather.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Micélio/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Pinus/microbiologia , Árvores/microbiologia , Basidiomycota/genética , Basidiomycota/isolamento & purificação , Micélio/genética , Micélio/isolamento & purificação , Micorrizas/genética , Micorrizas/isolamento & purificação , Estações do Ano , Microbiologia do Solo , Espanha
14.
Mycorrhiza ; 23(2): 99-106, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22772310

RESUMO

Quantification of extraradical mycelium of black truffle (Tuber melanosporum) has been carried out in a natural truffle ground and in seven truffle orchards (around 20 years old) established in Tierra Estella and Valdorba sites, within the natural distribution area of the black truffles in Navarre (northern Spain). Specific primers and a Taqman® probe were designed to perform real-time PCR with DNA extracted from soil samples. Amplification of T. melanosporum DNA was obtained from 131 out of the 160 soil samples. The detection limit of the technique was 1.48 µg mycelium/g of soil. The extraradical mycelium biomass detected in the soil from the natural truffle ground was significantly greater (up to ten times higher) than the mycelium biomass detected in any of the orchards. Soil from productive, nonirrigated orchards in the Tierra Estella site contained significantly more extraradical mycelium than the rest of orchards irrigated, productive of T. brumale, or nonproductive. The comparison of soil mycelium biomass in nonirrigated evergreen oak orchards in both sites showed significantly more mycelium biomass in the Tierra Estella site. This study is the first attempt to quantify extraradical mycelium of T. melanosporum in the soil using Taqman® probes. The obtained quantitative results are of special interest to evaluate the fungal response to cultural treatments and to monitor the dynamics of the extraradical mycelium of T. melanosporum in the soil.


Assuntos
Ascomicetos/isolamento & purificação , Micélio/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Microbiologia do Solo , Contagem de Colônia Microbiana/métodos , Primers do DNA/genética , DNA Fúngico/genética , Sondas de Oligonucleotídeos/genética , Sensibilidade e Especificidade , Espanha
15.
Mycorrhiza ; 22(1): 59-68, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21494822

RESUMO

The availability of most edible ectomycorrhizal mushrooms depends on their natural fructification. Sporocarp formation of these fungi is linked to habitat characteristics and climate conditions, but these data alone do not explain all the trends of fungal fruiting and dynamics. It could be hypothesized that the amount of soil mycelia could also be related to the production of carpophores. Soil samples (five cylinders of 250 cm(3) per plot) were taken monthly, from September to November, in five fenced permanent plots (5 × 5 m) in Pinar Grande (Soria, Spain), a Pinus sylvestris stand situated in the north of the Sistema Ibérico mountain range. Plots were chosen to establish a gradient of Boletus edulis productivity from 0 to 38.5 kg/ha year, according to the mean fresh weight of sporocarps collected during the last 10 years. B. edulis ectomycorrhizal root tips were identified in each soil sample according to its morphology and counted. DNA extractions were performed with the PowerSoil(TM) DNA Isolation Kit and quantification of extraradical soil mycelium by real-time polymerase chain reaction using specific primers and a TaqMan® probe. The concentration of soil mycelium of B. edulis (mg mycelium/g soil) did not differ significantly between plots (p = 0.1397), and sampling time (p = 0.7643) within the fructification period. The number of mycorrhizal short roots per soil volume showed significant differences between the plots (p = 0.0050) and the three sampling times (p < 0.0001). No significant correlation between the number of mycorrhizas and the productivity of the plot (kg of B. edulis/ha year) was detected (p = 0.615). A statistically significant positive correlation (p = 0.0481) was detected between the concentration of mycelia of B. edulis in the soil samples and the presence of short roots mycorrhizal with B. edulis in these samples. The productivity of the plots, in terms of sporocarps produced during the last 10 years, was not correlated either with the concentration of soil mycelium or with the presence or abundance of ectomycorrhizas.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Micélio/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Pinus sylvestris/microbiologia , Microbiologia do Solo , Árvores/microbiologia , Sequência de Bases , Basidiomycota/genética , Basidiomycota/fisiologia , Clima , Primers do DNA/genética , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Ecossistema , Carpóforos/crescimento & desenvolvimento , Dados de Sequência Molecular , Micélio/genética , Micorrizas/genética , Micorrizas/fisiologia , Pinus sylvestris/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Análise de Sequência de DNA , Solo , Espanha , Árvores/fisiologia
16.
Mycorrhiza ; 21(5): 393-401, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21120543

RESUMO

Intraspecific variability in root colonization, extraradical growth pattern, and survival after cold storage of Lactarius deliciosus isolates was determined in pure culture conditions using Pinus pinaster as a host plant. The ectomycorrhizal ability of L. deliciosus at 30, 45, and 60 days from inoculation was highly variable among isolates and was negatively correlated to the age of the culture (time elapsed from isolation). The formation of rhizomorphs was related to colonization ability, but no relationship was found between colonization and formation of extraradical mycelium. The final colonization achieved at 60 days from inoculation was not related to the tree species under which the sporocarps were collected. However, isolates from sporocarps collected under P. pinaster colonized more rapidly the seedlings than those collected under other pine species. The climatic range of the sporocarps from which the isolates were obtained (maritime vs. continental) was not related to the formation of mycorrhizas at 60 days from inoculation. However, isolates from sporocarps collected from a maritime climate area colonized more rapidly the P. pinaster seedlings than those collected from a continental zone. Tolerance to cold water storage of L. deliciosus was also isolate dependent. Growth revival in agar was obtained from most of the isolates after 28 months of cold storage at 4°C, but only 10 out of 29 isolates showed unaffected growth. The ITS rDNA alignment of all the L. deliciosus isolates showed a low variability with identities over 99%. Most of the variation was detected in the ITS1 region and consisted in single nucleotide changes and/or punctual indel mutations. The number of base differences per sequence from averaging over all sequence pairs was 1.329, which is in the low range when compared with other ectomycorrhizal species. No ITS pattern due to geographical origin of the isolates could be discerned.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Basidiomycota/isolamento & purificação , Viabilidade Microbiana , Micorrizas/crescimento & desenvolvimento , Micorrizas/isolamento & purificação , Pinus/microbiologia , Basidiomycota/classificação , Basidiomycota/genética , Temperatura Baixa , Dados de Sequência Molecular , Micorrizas/classificação , Micorrizas/genética , Raízes de Plantas/microbiologia , Preservação Biológica
17.
Mycorrhiza ; 19(3): 167-177, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19153778

RESUMO

Pinus pinea plants were inoculated with different strains of the edible ectomycorrhizal fungus Lactarius deliciosus. The inoculated plants were established in six experimental plantations in two sites located in the Mediterranean area to determine the effect of the initial colonization level and the inoculated strain on fungal persistence in the field. Ectomycorrhizal root colonization was determined at transplantation time and monitored at different times from uprooted plants. Extraradical soil mycelium biomass was determined from soil samples by TaqMan(R) real-time polymerase chain reaction (PCR). The results obtained indicate that the field site played a decisive role in the persistence of L. deliciosus after outplanting. The initial colonization level and the selection of the suitable strain were also significant factors but their effect on the persistence and spread of L. deliciosus was conditioned by the physical-chemical and biotic characteristics of the plantation soil and, possibly, by their influence in root growth. Molecular techniques based on real-time PCR allowed a precise quantification of extraradical mycelium of L. deliciosus in the field. The technique is promising for non-destructive assessment of fungal persistence since soil mycelium may be a good indicator of root colonization. However, the accuracy of the technique will ultimately depend on the development of appropriate soil sampling methods because of the high variability observed.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Pinus/microbiologia , Biomassa , Contagem de Colônia Microbiana/métodos , Geografia , Região do Mediterrâneo , Micélio/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Reação em Cadeia da Polimerase/métodos
18.
Mycorrhiza ; 18(8): 443-449, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18695982

RESUMO

Ectomycorrhizas of Boletus aereus, Boletus edulis, and Boletus reticulatus were synthesized with Cistus sp. under laboratory conditions using synthesis tubes filled with a mixture of sterilized peat-vermiculite and nutrient solution. The fungal strains isolated from sporocarps were identified by molecular techniques. The inoculated seedlings were grown for 4-5 months. The ectomycorrhizas formed were described based on standard morphological and anatomical characters. The three ectomycorrhizas described were very similar, with white monopodial-pinnate morphology, a three-layered plectenchymatous mantle on plan view and boletoid rhizomorphs.


Assuntos
Basidiomycota/fisiologia , Cistus/microbiologia , Micorrizas/fisiologia , Micorrizas/crescimento & desenvolvimento , Especificidade da Espécie
19.
Mycorrhiza ; 18(5): 227-239, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18437431

RESUMO

Acidification of forest ecosystems leads to increased plant availability of the micronutrient manganese (Mn), which is toxic when taken up in excess. To investigate whether ectomycorrhizas protect against excessive Mn by improving plant growth and nutrition or by retention of excess Mn in the hyphal mantle, seedlings of two populations of Douglas fir (Pseudotsuga menziesii), two varieties, one being menziesii (DFM) and the other being glauca (DFG), were inoculated with the ectomycorrhizal fungus Rhizopogon subareolatus in sand cultures. Five months after inoculation, half of the inoculated and non-inoculated seedlings were exposed to excess Mn in the nutrient solution for further 5 months. At the end of this period, plant productivity, nutrient concentrations, Mn uptake and subcellular compartmentalisation were evaluated. Non-inoculated, non-stressed DFM plants produced about 2.5 times more biomass than similarly treated DFG. Excess Mn in the nutrient solution led to high accumulation of Mn in needles and roots but only to marginal loss in biomass. Colonisation with R. subareolatus slightly suppressed DFM growth but strongly reduced that of DFG (-50%) despite positive effects of mycorrhizas on plant phosphorus nutrition. Growth reductions of inoculated Douglas fir seedlings were unexpected since the degree of mycorrhization was not high, i.e. ca. 30% in DFM and 8% in DFG. Accumulation of high Mn was not prevented in inoculated seedlings. The hyphal mantle of mycorrhizal root tips accumulated divalent cations such as Ca, but not Mn, thus not providing a barrier against excessive Mn uptake into the plants associated with R. subareolatus.


Assuntos
Basidiomycota/metabolismo , Manganês/metabolismo , Micorrizas/metabolismo , Fósforo/metabolismo , Pseudotsuga/crescimento & desenvolvimento , Pseudotsuga/metabolismo , Basidiomycota/crescimento & desenvolvimento , Manganês/análise , Micorrizas/crescimento & desenvolvimento , Fósforo/análise , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Pseudotsuga/química , Pseudotsuga/microbiologia
20.
Mycorrhiza ; 18(2): 69-77, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18193298

RESUMO

The objective of this study is to evaluate the field persistence of the edible ectomycorrhizal fungus Lactarius deliciosus in competition with two ubiquitous soil fungi. Couples of plants inoculated with either L. deliciosus, Rhizopogon roseolus, or R. luteolus were transplanted, 10 cm apart, in two different sites at the following combinations: L. deliciosus-R. roseolus, L. deliciosus-R. luteolus, L. deliciosus-control (non-inoculated), control-R. roseolus, control-R. luteolus, and control-control. Eight months after transplantation, root colonization and extraradical soil mycelium for each fungal species were quantified. For mycelium quantification, soil cores equidistant to the two plants in each couple were taken, and total deoxyribonucleic acid (DNA) was extracted. Real-time polymerase chain reaction analysis was performed using specific primers and TaqMan Minor groove binding (MGB) probes designed in the ribosomal DNA internal transcribed spacer region of each fungal species. Field site significantly influenced persistence of both mycorrhizas and extraradical mycelium of L. deliciosus. Extraradical mycelium quantity was positively correlated with the final percentage of ectomycorrhizas for the three fungal species. Different competitive pressure between the two Rhizopogon species on L. deliciosus persistence was observed, with R. luteolus having no effect on L. deliciosus survival. Negative correlation between the final percentage of mycorrhizas of L. deliciosus and R. roseolus was observed. However, no relationship was determined between extraradical mycelia of both fungal species. The results obtained suggest that competition between L. deliciosus and R. roseolus takes place in the root system, for ectomycorrhiza formation in available roots, rather than in the extraradical phase.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Micélio/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Plantas/microbiologia , Microbiologia do Solo , Antibiose , Basidiomycota/classificação , Basidiomycota/genética , Basidiomycota/isolamento & purificação , Contagem de Colônia Microbiana/métodos , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/isolamento & purificação , Raízes de Plantas/microbiologia , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...