Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(3): 1607-1619, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38416687

RESUMO

Encapsulating multiple growth factors within a scaffold enhances the regenerative capacity of engineered bone grafts through their localization and controls the spatiotemporal release profile. In this study, we bioprinted hybrid bone grafts with an inherent built-in controlled growth factor delivery system, which would contribute to vascularized bone formation using a single stem cell source, human adipose-derived stem/stromal cells (ASCs) in vitro. The strategy was to provide precise control over the ASC-derived osteogenesis and angiogenesis at certain regions of the graft through the activity of spatially positioned microencapsulated BMP-2 and VEGF within the osteogenic and angiogenic bioink during bioprinting. The 3D-bioprinted vascularized bone grafts were cultured in a perfusion bioreactor. Results proved localized expression of osteopontin and CD31 by the ASCs, which was made possible through the localized delivery activity of the built-in delivery system. In conclusion, this approach provided a methodology for generating off-the-shelf constructs for vascularized bone regeneration and has the potential to enable single-step, in situ bioprinting procedures for creating vascularized bone implants when applied to bone defects.


Assuntos
Bioimpressão , Humanos , Engenharia Tecidual/métodos , Osso e Ossos , Peptídeos e Proteínas de Sinalização Intercelular , Células Estromais/transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...