Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 88: 94-100, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27488263

RESUMO

There is an increasing need to develop biosensor methods that are highly sensitive and that can be combined with low-cost consumables. The use of magnetic nanoparticles (MNPs) is attractive because their detection is compatible with low-cost disposables and because application of a magnetic field can be used to accelerate assay kinetics. We present the first study and comparison of the performance of magnetic susceptibility measurements and a newly proposed optomagnetic method. For the comparison we use the C-reactive protein (CRP) induced agglutination of identical samples of 100nm MNPs conjugated with CRP antibodies. Both methods detect agglutination as a shift to lower frequencies in measurements of the dynamics in response to an applied oscillating magnetic field. The magnetic susceptibility method probes the magnetic response whereas the optomagnetic technique probes the modulation of laser light transmitted through the sample. The two techniques provided highly correlated results upon agglutination when they measure the decrease of the signal from the individual MNPs (turn-off detection strategy), whereas the techniques provided different results, strongly depending on the read-out frequency, when detecting the signal due to MNP agglomerates (turn-on detection strategy). These observations are considered to be caused by differences in the volume-dependence of the magnetic and optical signals from agglomerates. The highest signal from agglomerates was found in the optomagnetic signal at low frequencies.


Assuntos
Anticorpos Imobilizados/química , Técnicas Biossensoriais/métodos , Proteína C-Reativa/análise , Nanopartículas de Magnetita/química , Testes de Aglutinação/métodos , Animais , Cabras , Humanos , Limite de Detecção , Magnetismo/métodos
2.
Sci Rep ; 5: 16145, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26536916

RESUMO

Dengue is a tropical vector-borne disease without cure or vaccine that progressively spreads into regions with temperate climates. Diagnostic tools amenable to resource-limited settings would be highly valuable for epidemiologic control and containment during outbreaks. Here, we present a novel low-cost automated biosensing platform for detection of dengue fever biomarker NS1 and demonstrate it on NS1 spiked in human serum. Magnetic nanoparticles (MNPs) are coated with high-affinity monoclonal antibodies against NS1 via bio-orthogonal Cu-free 'click' chemistry on an anti-fouling surface molecular architecture. The presence of the target antigen NS1 triggers MNP agglutination and the formation of nanoclusters with rapid kinetics enhanced by external magnetic actuation. The amount and size of the nanoclusters correlate with the target concentration and can be quantified using an optomagnetic readout method. The resulting automated dengue fever assay takes just 8 minutes, requires 6 µL of serum sample and shows a limit of detection of 25 ng/mL with an upper detection range of 20000 ng/mL. The technology holds a great potential to be applied to NS1 detection in patient samples. As the assay is implemented on a low-cost microfluidic disc the platform is suited for further expansion to multiplexed detection of a wide panel of biomarkers.


Assuntos
Biomarcadores/sangue , Vírus da Dengue/química , Dengue/sangue , Nanopartículas de Magnetita/química , Soro/química , Proteínas não Estruturais Virais/sangue , Anticorpos Monoclonais/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/sangue , Dengue/virologia , Vírus da Dengue/metabolismo , Sensibilidade e Especificidade
3.
Chem Commun (Camb) ; 51(97): 17313-6, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26462973

RESUMO

Study of the copper binding properties of metformin is important for revealing its mechanism of action as a first-line type-2 diabetes drug. A quantitative investigation of interactions between metformin and L-cysteine-copper complexes was performed. The results suggest that metformin could interact with biological copper, which plays a key role in mitochondrial function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...