Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961260

RESUMO

The ability of cancer cells to alter their identity is essential for tumor survival and progression. Loss of the pulmonary lineage specifier NKX2-1 within KRAS-driven lung adenocarcinoma (LUAD) enhances tumor progression and results in a pulmonary-to-gastric lineage switch that is dependent upon the activity of pioneer factors FoxA1 and FoxA2; however, the underlying mechanism remains largely unknown. Here, we show that FoxA1/2 reprogram the epigenetic landscape of NKX2-1-negative LUAD to facilitate a gastric identity. After Nkx2-1 deletion, FoxA1/2 mediate demethylation of gastric-defining genes through recruitment of TET3, an enzyme that induces DNA demethylation. H3K27ac ChIP-seq and HiChIP show that FoxA1/2 also control the activity of regulatory elements and their 3D interactions at gastric loci. Furthermore, oncogenic KRAS is required for the FoxA1/2-dependent epigenetic reprogramming. This work demonstrates the role of FoxA1/2 in rewiring the methylation and histone landscape and cis-regulatory dynamics of NKX2-1-negative LUAD to drive cancer cell lineage switching.

2.
Nucleic Acids Res ; 51(5): 2117-2136, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36715322

RESUMO

The conserved complex of the Rad6 E2 ubiquitin-conjugating enzyme and the Bre1 E3 ubiquitin ligase catalyzes histone H2B monoubiquitination (H2Bub1), which regulates chromatin dynamics during transcription and other nuclear processes. Here, we report a crystal structure of Rad6 and the non-RING domain N-terminal region of Bre1, which shows an asymmetric homodimer of Bre1 contacting a conserved loop on the Rad6 'backside'. This contact is distant from the Rad6 catalytic site and is the location of mutations that impair telomeric silencing in yeast. Mutational analyses validated the importance of this contact for the Rad6-Bre1 interaction, chromatin-binding dynamics, H2Bub1 formation and gene expression. Moreover, the non-RING N-terminal region of Bre1 is sufficient to confer nucleosome binding ability to Rad6 in vitro. Interestingly, Rad6 P43L protein, an interaction interface mutant and equivalent to a cancer mutation in the human homolog, bound Bre1 5-fold more tightly than native Rad6 in vitro, but showed reduced chromatin association of Bre1 and reduced levels of H2Bub1 in vivo. These surprising observations imply conformational transitions of the Rad6-Bre1 complex during its chromatin-associated functional cycle, and reveal the differential effects of specific disease-relevant mutations on the chromatin-bound and unbound states. Overall, our study provides structural insights into Rad6-Bre1 interaction through a novel interface that is important for their biochemical and biological responses.


Assuntos
Histonas , Proteínas de Saccharomyces cerevisiae , Enzimas de Conjugação de Ubiquitina , Humanos , Cromatina/genética , Cromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
3.
Dev Cell ; 57(15): 1866-1882.e10, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35835117

RESUMO

Changes in cellular identity (also known as histologic transformation or lineage plasticity) can drive malignant progression and resistance to therapy in many cancers, including lung adenocarcinoma (LUAD). The lineage-specifying transcription factors FoxA1 and FoxA2 (FoxA1/2) control identity in NKX2-1/TTF1-negative LUAD. However, their role in NKX2-1-positive LUAD has not been systematically investigated. We find that Foxa1/2 knockout severely impairs tumorigenesis in KRAS-driven genetically engineered mouse models and human cell lines. Loss of FoxA1/2 leads to the collapse of a dual-identity state, marked by co-expression of pulmonary and gastrointestinal transcriptional programs, which has been implicated in LUAD progression. Mechanistically, FoxA1/2 loss leads to aberrant NKX2-1 activity and genomic localization, which in turn actively inhibits tumorigenesis and drives alternative cellular identity programs that are associated with non-proliferative states. This work demonstrates that FoxA1/2 expression is a lineage-specific vulnerability in NKX2-1-positive LUAD and identifies mechanisms of response and resistance to targeting FoxA1/2 in this disease.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão/genética , Animais , Transformação Celular Neoplásica , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/genética , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Fator Nuclear 1 de Tireoide
4.
Nucleic Acids Res ; 50(2): 784-802, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34967414

RESUMO

The conserved transcription elongation factor Spt6 makes several contacts with the RNA Polymerase II (RNAPII) complex, including a high-affinity interaction between the Spt6 tandem SH2 domain (Spt6-tSH2) and phosphorylated residues of the Rpb1 subunit in the linker between the catalytic core and the C-terminal domain (CTD) heptad repeats. This interaction contributes to generic localization of Spt6, but we show here that it also has gene-specific roles. Disrupting the interface affected transcription start site selection at a subset of genes whose expression is regulated by this choice, and this was accompanied by changes in a distinct pattern of Spt6 accumulation at these sites. Splicing efficiency was also diminished, as was apparent progression through introns that encode snoRNAs. Chromatin-mediated repression was impaired, and a distinct role in maintaining +1 nucleosomes was identified, especially at ribosomal protein genes. The Spt6-tSH2:Rpb1 interface therefore has both genome-wide functions and local roles at subsets of genes where dynamic decisions regarding initiation, transcript processing, or termination are made. We propose that the interaction modulates the availability or activity of the core elongation and histone chaperone functions of Spt6, contributing to coordination between RNAPII and its accessory factors as varying local conditions call for dynamic responses.


Assuntos
Chaperonas de Histonas/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Domínios de Homologia de src , Sítios de Ligação , Regulação da Expressão Gênica , Chaperonas de Histonas/química , Chaperonas de Histonas/genética , Humanos , IMP Desidrogenase/metabolismo , Modelos Biológicos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , RNA Polimerase II/química , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade , Sítio de Iniciação de Transcrição , Transcrição Gênica , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética
5.
Genetics ; 219(2)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34849878

RESUMO

The Tup1-Cyc8 corepressor complex of Saccharomyces cerevisiae is recruited to promoters by DNA-binding proteins to repress transcription of genes, including the a-specific mating-type genes. We report here a tup1(S649F) mutant that displays mating irregularities and an α-predominant growth defect. RNA-Seq and ChIP-Seq were used to analyze gene expression and Tup1 occupancy changes in mutant vs wild type in both a and α cells. Increased Tup1(S649F) occupancy tended to occur upstream of upregulated genes, whereas locations with decreased occupancy usually did not show changes in gene expression, suggesting this mutant not only loses corepressor function but also behaves as a coactivator. Based upon studies demonstrating a dual role of Tup1 in both repression and activation, we postulate that the coactivator function of Tup1(S649F) results from diminished interaction with repressor proteins, including α2. We also found that large changes in mating-type-specific gene expression between a and α or between mutant and wild type were not easily explained by the range of Tup1 occupancy levels within their promoters, as predicted by the classic model of a-specific gene repression by Tup1. Most surprisingly, we observed Tup1 occupancy upstream of the a-specific gene MFA2 and the α-specific gene MF(ALPHA)1 in cells in which each gene was expressed rather than repressed. These results, combined with the identification of additional mating-related genes upregulated in the tup1(S649F) α strain, illustrate that the role of Tup1 in distinguishing mating types in yeast appears to be both more comprehensive and more nuanced than previously appreciated.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas Nucleares/genética , Feromônios/genética , Feromônios/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Ativação Transcricional
6.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301870

RESUMO

Genome-wide association studies have identified the chromosome 10q26 (Chr10) locus, which contains the age-related maculopathy susceptibility 2 (ARMS2) and high temperature requirement A serine peptidase 1 (HTRA1) genes, as the strongest genetic risk factor for age-related macular degeneration (AMD) [L.G. Fritsche et al., Annu. Rev. Genomics Hum. Genet. 15, 151-171, (2014)]. To date, it has been difficult to assign causality to any specific single nucleotide polymorphism (SNP), haplotype, or gene within this region because of high linkage disequilibrium among the disease-associated variants [J. Jakobsdottir et al. Am. J. Hum. Genet. 77, 389-407 (2005); A. Rivera et al. Hum. Mol. Genet. 14, 3227-3236 (2005)]. Here, we show that HTRA1 messenger RNA (mRNA) is reduced in retinal pigment epithelium (RPE) but not in neural retina or choroid tissues derived from human donors with homozygous risk at the 10q26 locus. This tissue-specific decrease is mediated by the presence of a noncoding, cis-regulatory element overlapping the ARMS2 intron, which contains a potential Lhx2 transcription factor binding site that is disrupted by risk variant rs36212733. HtrA1 protein increases with age in the RPE-Bruch's membrane (BM) interface in Chr10 nonrisk donors but fails to increase in donors with homozygous risk at the 10q26 locus. We propose that HtrA1, an extracellular chaperone and serine protease, functions to maintain the optimal integrity of the RPE-BM interface during the aging process and that reduced expression of HTRA1 mRNA and protein in Chr10 risk donors impairs this protective function, leading to increased risk of AMD pathogenesis. HtrA1 augmentation, not inhibition, in high-risk patients should be considered as a potential therapy for AMD.


Assuntos
Predisposição Genética para Doença , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Degeneração Macular/genética , Epitélio Pigmentado da Retina/metabolismo , Corioide/metabolismo , Variação Genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Humanos , Desequilíbrio de Ligação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retina/metabolismo
7.
PLoS Genet ; 16(12): e1009133, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33382702

RESUMO

Transcriptional regulation of the Saccharomyces cerevisiae HO gene is highly complex, requiring a balance of multiple activating and repressing factors to ensure that only a few transcripts are produced in mother cells within a narrow window of the cell cycle. Here, we show that the Ash1 repressor associates with two DNA sequences that are usually concealed within nucleosomes in the HO promoter and recruits the Tup1 corepressor and the Rpd3 histone deacetylase, both of which are required for full repression in daughters. Genome-wide ChIP identified greater than 200 additional sites of co-localization of these factors, primarily within large, intergenic regions from which they could regulate adjacent genes. Most Ash1 binding sites are in nucleosome depleted regions (NDRs), while a small number overlap nucleosomes, similar to HO. We demonstrate that Ash1 binding to the HO promoter does not occur in the absence of the Swi5 transcription factor, which recruits coactivators that evict nucleosomes, including the nucleosomes obscuring the Ash1 binding sites. In the absence of Swi5, artificial nucleosome depletion allowed Ash1 to bind, demonstrating that nucleosomes are inhibitory to Ash1 binding. The location of binding sites within nucleosomes may therefore be a mechanism for limiting repressive activity to periods of nucleosome eviction that are otherwise associated with activation of the promoter. Our results illustrate that activation and repression can be intricately connected, and events set in motion by an activator may also ensure the appropriate level of repression and reset the promoter for the next activation cycle.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/genética , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Repressoras/genética , Saccharomyces cerevisiae , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
8.
Mol Cell ; 80(4): 712-725.e5, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33058778

RESUMO

SWI/SNF-family remodelers (BAF/PBAF in mammals) are essential chromatin regulators, and mutations in human BAF/PBAF components are associated with ∼20% of cancers. Cancer-associated missense mutations in human BRG1 (encoding the catalytic ATPase) have been characterized previously as conferring loss-of-function. Here, we show that cancer-associated missense mutations in BRG1, when placed into the orthologous Sth1 ATPase of the yeast RSC remodeler, separate into two categories: loss-of-function enzymes, or instead, gain-of-function enzymes that greatly improve DNA translocation efficiency and nucleosome remodeling in vitro. Our work identifies a structural "hub," formed by the association of several Sth1 domains, that regulates ATPase activity and DNA translocation efficiency. Remarkably, all gain-of-function cancer-associated mutations and all loss-of-function mutations physically localize to distinct adjacent regions in the hub, which specifically regulate and implement DNA translocation, respectively. In vivo, only gain-of-function cancer-associated mutations conferred precocious chromatin accessibility. Taken together, we provide a structure-function mechanistic basis for cancer-associated hyperactivity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Mutação com Ganho de Função , Neoplasias/patologia , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Neoplasias/genética , Proteínas Nucleares/genética , Nucleossomos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Translocação Genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-32923906

RESUMO

PURPOSE: Germline mutations in DNA repair (DR) genes and susceptibility genes CDKN2A and HOXB13 have previously been associated with prostate cancer (PC) incidence and/or progression. However, the role and prevalence of this class of mutations in metastatic PC (mPC) are not fully understood. PATIENTS AND METHODS: To evaluate the frequency of pathogenic/likely pathogenic germline variants (PVs/LPVs) in men with mPC, this study sequenced 38 DR genes, CDKN2A, and HOXB13 in a predominantly white cohort of 317 patients with mPC. A PC registry at the University of Utah was used for patient sample acquisition and retrospective clinical data collection. Deep target sequencing allowed for germline and copy number variant analyses. Validated PVs/LPVs were integrated with clinical and demographic data for statistical correlation analyses. RESULTS: All pathogenic variants were found in men self-reported as white, with a carrier frequency of 8.5% (DR genes, 7.3%; CDKN2A/HOXB13, 1.2%). Consistent with previous reports, mutations were most frequently identified in the breast cancer susceptibility gene BRCA2. It was also found that 50% of identified PVs/LPVs were categorized as founder mutations with European origins. Correlation analyses did not support a trend toward more advanced or earlier-onset disease in comparisons between carriers and noncarriers of deleterious DR or HOXB13 G84E mutations. CONCLUSION: These findings demonstrate a lower prevalence of germline PVs/LPVs in an unselected, predominantly white mPC cohort than previously reported, which may have implications for the design of clinical trials testing targeted therapies. Larger studies in broad and diverse populations are needed to more accurately define the prevalence of germline mutations in men with mPC.

10.
Elife ; 92020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32496195

RESUMO

SWI/SNF-family chromatin remodeling complexes, such as S. cerevisiae RSC, slide and eject nucleosomes to regulate transcription. Within nucleosomes, stiff DNA sequences confer spontaneous partial unwrapping, prompting whether and how SWI/SNF-family remodelers are specialized to remodel partially-unwrapped nucleosomes. RSC1 and RSC2 are orthologs of mammalian PBRM1 (polybromo) which define two separate RSC sub-complexes. Remarkably, in vitro the Rsc1-containing complex remodels partially-unwrapped nucleosomes much better than does the Rsc2-containing complex. Moreover, a rsc1Δ mutation, but not rsc2Δ, is lethal with histone mutations that confer partial unwrapping. Rsc1/2 isoforms both cooperate with the DNA-binding proteins Rsc3/30 and the HMG protein, Hmo1, to remodel partially-unwrapped nucleosomes, but show differential reliance on these factors. Notably, genetic impairment of these factors strongly reduces the expression of genes with wide nucleosome-deficient regions (e.g., ribosomal protein genes), known to harbor partially-unwrapped nucleosomes. Taken together, Rsc1/2 isoforms are specialized through composition and interactions to manage and remodel partially-unwrapped nucleosomes.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Nucleossomos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
J Immunol ; 203(2): 557-568, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31182480

RESUMO

Graft-versus-host disease (GVHD) is the most serious complication of allogeneic hematopoietic cell transplantation. Notch signals delivered during the first 48 h after transplantation drive proinflammatory cytokine production in conventional T cells (Tconv) and inhibit the expansion of regulatory T cells (Tregs). Short-term Notch inhibition induces long-term GVHD protection. However, it remains unknown whether Notch blockade blunts GVHD through its effects on Tconv, Tregs, or both and what early Notch-regulated molecular events occur in alloantigen-specific T cells. To address these questions, we engineered T cell grafts to achieve selective Notch blockade in Tconv versus Tregs and evaluated their capacity to trigger GVHD in mice. Notch blockade in Tconv was essential for GVHD protection as GVHD severity was similar in the recipients of wild-type Tconv combined with Notch-deprived versus wild-type Tregs. To identify the impact of Notch signaling on the earliest steps of T cell activation in vivo, we established a new acute GVHD model mediated by clonal alloantigen-specific 4C CD4+ Tconv. Notch-deprived 4C T cells had preserved early steps of activation, IL-2 production, proliferation, and Th cell polarization. In contrast, Notch inhibition dampened IFN-γ and IL-17 production, diminished mTORC1 and ERK1/2 activation, and impaired transcription of a subset of Myc-regulated genes. The distinct Notch-regulated signature had minimal overlap with known Notch targets in T cell leukemia and developing T cells, highlighting the specific impact of Notch signaling in mature T cells. Our findings uncover a unique molecular program associated with the pathogenic effects of Notch in T cells at the earliest stages of GVHD.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Doença Enxerto-Hospedeiro/imunologia , Isoantígenos/imunologia , Receptores Notch/imunologia , Animais , Transplante de Medula Óssea/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Transplante Homólogo/efeitos adversos
12.
Mol Metab ; 24: 44-63, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30948248

RESUMO

OBJECTIVE: Activation of the Wnt-signaling pathway is known to inhibit differentiation in adipocytes. However, there is a gap in our understanding of the transcriptional network regulated by components of the Wnt-signaling pathway during adipogenesis and in adipocytes during postnatal life. The key intracellular effectors of the Wnt-signaling pathway occur through TCF transcription factors such as TCF7L2 (transcription factor-7-like 2). Several genetic variants in proximity to TCF7L2 have been linked to type 2 diabetes through genome-wide association studies in various human populations. Our work aims to functionally characterize the adipocyte specific gene program regulated by TCF7L2 and understand how this program regulates metabolism. METHODS: We generated Tcf7l2F/F mice and assessed TCF7L2 function in isolated adipocytes and adipose specific knockout mice. ChIP-sequencing and RNA-sequencing was performed on the isolated adipocytes with control and TCF7L2 knockout cells. Adipose specific TCF7L2 knockout mice were challenged with high fat diet and assessed for body weight, glucose tolerance, and lipolysis. RESULTS: Here we report that TCF7L2 regulates adipocyte size, endocrine function, and glucose metabolism. Tcf7l2 is highly expressed in white adipose tissue, and its expression is suppressed in genetic and diet-induced models of obesity. Genome-wide distribution of TCF7L2 binding and gene expression analysis in adipocytes suggests that TCF7L2 directly regulates genes implicated in cellular metabolism and cell cycle control. When challenged with a high-fat diet, conditional deletion of TCF7L2 in adipocytes led to impaired glucose tolerance, impaired insulin sensitivity, promoted weight gain, and increased adipose tissue mass. This was accompanied by reduced expression of triglyceride hydrolase, reduced fasting-induced free fatty acid release, and adipocyte hypertrophy in subcutaneous adipose tissue. CONCLUSIONS: Together our studies support that TCF7L2 is a central transcriptional regulator of the adipocyte metabolic program by directly regulating the expression of genes involved in lipid and glucose metabolism.


Assuntos
Adipócitos/metabolismo , Glucose/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Aumento de Peso/genética , Adipócitos/patologia , Animais , Células Cultivadas , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo
13.
Genetics ; 211(3): 877-892, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30679261

RESUMO

FACT (FAcilitates Chromatin Transcription/Transactions) is a histone chaperone that can destabilize or assemble nucleosomes. Acetylation of histone H3-K56 weakens a histone-DNA contact that is central to FACT activity, suggesting that this modification could affect FACT functions. We tested this by asking how mutations of H3-K56 and FACT affect nucleosome reorganization activity in vitro, and chromatin integrity and transcript output in vivo Mimics of unacetylated or permanently acetylated H3-K56 had different effects on FACT activity as expected, but the same mutations had surprisingly similar effects on global transcript levels. The results are consistent with emerging models that emphasize FACT's importance in establishing global chromatin architecture prior to transcription, promoting transitions among different states as transcription profiles change, and restoring chromatin integrity after it is disturbed. Optimal FACT activity required the availability of both modified and unmodified states of H3-K56. Perturbing this balance was especially detrimental for maintaining repression of genes with high nucleosome occupancy over their promoters and for blocking antisense transcription at the +1 nucleosome. The results reveal a complex collaboration between H3-K56 modification status and multiple FACT functions, and support roles for nucleosome reorganization by FACT before, during, and after transcription.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Chaperonas de Histonas/metabolismo , Código das Histonas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/metabolismo , Acetilação , Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Chaperonas de Histonas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/genética
14.
Mol Cancer Ther ; 18(1): 185-195, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30301863

RESUMO

Histone deacetylase (HDAC) inhibition has sporadic clinical efficacy in urothelial carcinoma; the genomic basis for clinical response is not known. In two separate phase I clinical trials testing pharmacokinetic aspects of HDAC inhibitors in advanced solid tumors, we identified one patient with advanced urothelial carcinoma who had a complete response to belinostat, and one patient with advanced urothelial carcinoma who had a partial response to panobinostat. The archived tumors of the responders were genomically characterized in comparison to others with urothelial carcinoma on the trials. Urothelial carcinoma cell lines treated with panobinostat and belinostat were studied to elucidate the mechanisms of benefit. Notably, the urothelial carcinoma tumors that responded to HDAC inhibition had ARID1A mutations. ARID1A mutations were also noted in the tumors of three patients who had stable disease as their best response to HDAC inhibition. Corroborating the basis of sensitivity, transcriptional profiling of platinum-resistant ARID1A-mutated HT1197 cells treated with panobinostat reveals negative enrichment for both cyto-proliferative (MYC and E2F targets) and DNA repair gene sets, and positive enrichment for TP53 and inflammatory gene sets. Our study identifies ARID1A loss as a basis for clinical response to pan HDAC inhibition and offers avenues for potential rational therapeutic combinations with HDAC inhibitors in advanced urothelial carcinoma.


Assuntos
Carcinoma de Células de Transição/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacocinética , Mutação , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Carcinoma de Células de Transição/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios Clínicos Fase I como Assunto , Proteínas de Ligação a DNA , Resistencia a Medicamentos Antineoplásicos , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Platina/farmacologia , Medicina de Precisão , Neoplasias da Bexiga Urinária/genética
15.
Clin Genitourin Cancer ; 16(2): e373-e382, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28974397

RESUMO

PURPOSE: Tumor genomic profiling helps direct therapy for advanced urothelial carcinoma (UC). In the course of clinical care, we encountered a patient with a complete loss of SMARCB1 (switch/sucrose nonfermentable-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1), which encodes INI-1 (integrase interactor 1), as the sole detected driver of their urinary tract tumor. Our objective was the identification and genomic characterization of urinary tract neoplasia with complete SMARCB1 loss. PATIENTS AND METHODS: Tissue from 1287 patients with UC was assayed by hybrid capture-based comprehensive genomic profiling (CGP) in the course of clinical care to evaluate genomic alterations (GA), such as, base substitutions, insertions/deletions, amplifications, copy number alterations, fusions/rearrangements, and targeted therapy opportunities. A total of 315 genes frequently altered in cancer were assayed. RESULTS: CGP identified 10 patients with SMARCB1 alterations. Of the 10 patients, 4 (1 each with renal pelvis, ureter, bladder, and unknown primary cancer) had complete loss of SMARCB1, and 6 had loss of heterozygosity with an unknown effect on function or heterozygous loss. Patients with complete SMARCB1 loss had few or no additional alterations. Compared with conventional UC, the tumor mutational burden was significantly lower (P = .004). All 4 patients with complete SMARCB1-loss tumors were < 56 years old and 3 were female. CONCLUSION: The genomic profiles of the tumors from patients with UC revealed a population of tumors driven by complete loss of SMARCB1. This previously uncharacterized subset of INI-1-deficient urinary tract tumors might constitute a new tumor category that could be sensitive to targeted therapy, including EZH2 (enhancer of zeste homolog 2) inhibition. Clinical trial testing could be challenging owing to the rarity of the disease.


Assuntos
Carcinoma de Células de Transição/genética , Deleção de Genes , Proteína SMARCB1/genética , Neoplasias da Bexiga Urinária/genética , Adulto , Carcinoma de Células de Transição/patologia , Feminino , Humanos , Masculino , Estudos Retrospectivos , Análise de Sequência de DNA/métodos , Neoplasias da Bexiga Urinária/patologia
16.
Elife ; 62017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28826505

RESUMO

We determined that the tandem SH2 domain of S. cerevisiae Spt6 binds the linker region of the RNA polymerase II subunit Rpb1 rather than the expected sites in its heptad repeat domain. The 4 nM binding affinity requires phosphorylation at Rpb1 S1493 and either T1471 or Y1473. Crystal structures showed that pT1471 binds the canonical SH2 pY site while pS1493 binds an unanticipated pocket 70 Å distant. Remarkably, the pT1471 phosphate occupies the phosphate-binding site of a canonical pY complex, while Y1473 occupies the position of a canonical pY side chain, with the combination of pT and Y mimicking a pY moiety. Biochemical data and modeling indicate that pY1473 can form an equivalent interaction, and we find that pT1471/pS1493 and pY1473/pS1493 combinations occur in vivo. ChIP-seq and genetic analyses demonstrate the importance of these interactions for recruitment of Spt6 to sites of transcription and for the maintenance of repressive chromatin.


Assuntos
Chaperonas de Histonas/química , Chaperonas de Histonas/metabolismo , Processamento de Proteína Pós-Traducional , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica , Transcrição Gênica
17.
J Biol Chem ; 291(33): 17417-26, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27317660

RESUMO

The cellular transport of the cofactor heme and its biosynthetic intermediates such as protoporphyrin IX is a complex and highly coordinated process. To investigate the molecular details of this trafficking pathway, we created a synthetic lesion in the heme biosynthetic pathway by deleting the gene HEM15 encoding the enzyme ferrochelatase in S. cerevisiae and performed a genetic suppressor screen. Cells lacking Hem15 are respiratory-defective because of an inefficient heme delivery to the mitochondria. Thus, the biogenesis of mitochondrial cytochromes is negatively affected. The suppressor screen resulted in the isolation of respiratory-competent colonies containing two distinct missense mutations in Nce102, a protein that localizes to plasma membrane invaginations designated as eisosomes. The presence of the Nce102 mutant alleles enabled formation of the mitochondrial respiratory complexes and respiratory growth in hem15Δ cells cultured in supplemental hemin. Respiratory function in hem15Δ cells can also be restored by the presence of a heterologous plasma membrane heme permease (HRG-4), but the mode of suppression mediated by the Nce102 mutant is more efficient. Attenuation of the endocytic pathway through deletion of the gene END3 impaired the Nce102-mediated rescue, suggesting that the Nce102 mutants lead to suppression through the yeast endocytic pathway.


Assuntos
Endossomos/metabolismo , Heme/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico Ativo/fisiologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Endossomos/genética , Ferroquelatase/genética , Ferroquelatase/metabolismo , Heme/genética , Mitocôndrias/genética , Mutação de Sentido Incorreto , Consumo de Oxigênio/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
Nat Commun ; 7: 11949, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27325136

RESUMO

Histone H3K4 methylation is connected to gene transcription from yeast to humans, but its mechanistic roles in transcription and chromatin dynamics remain poorly understood. We investigated the functions for Set1 and Jhd2, the sole H3K4 methyltransferase and H3K4 demethylase, respectively, in S. cerevisiae. Here, we show that Set1 and Jhd2 predominantly co-regulate genome-wide transcription. We find combined activities of Set1 and Jhd2 via H3K4 methylation contribute to positive or negative transcriptional regulation. Providing mechanistic insights, our data reveal that Set1 and Jhd2 together control nucleosomal turnover and occupancy during transcriptional co-regulation. Moreover, we find a genome-wide co-regulation of chromatin structure by Set1 and Jhd2 at different groups of transcriptionally active or inactive genes and at different regions within yeast genes. Overall, our study puts forth a model wherein combined actions of Set1 and Jhd2 via modulating H3K4 methylation-demethylation together control chromatin dynamics during various facets of transcriptional regulation.


Assuntos
Genoma Fúngico , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Histona Desmetilases com o Domínio Jumonji/genética , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Montagem e Desmontagem da Cromatina , Regulação Fúngica da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Metilação , Modelos Genéticos , Família Multigênica , Nucleossomos/química , Nucleossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
19.
Mol Cell ; 62(3): 453-461, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27153540

RESUMO

The RSC chromatin remodeler slides and ejects nucleosomes, utilizing a catalytic subunit (Sth1) with DNA translocation activity, which can pump DNA around the nucleosome. A central question is whether and how DNA translocation is regulated to achieve sliding versus ejection. Here, we report the regulation of DNA translocation efficiency by two domains residing on Sth1 (Post-HSA and Protrusion 1) and by actin-related proteins (ARPs) that bind Sth1. ARPs facilitated sliding and ejection by improving "coupling"-the amount of DNA translocation by Sth1 relative to ATP hydrolysis. We also identified and characterized Protrusion 1 mutations that promote "coupling," and Post-HSA mutations that improve ATP hydrolysis; notably, the strongest mutations conferred efficient nucleosome ejection without ARPs. Taken together, sliding-to-ejection involves a continuum of DNA translocation efficiency, consistent with higher magnitudes of ATPase and coupling activities (involving ARPs and Sth1 domains), enabling the simultaneous rupture of multiple histone-DNA contacts facilitating ejection.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Nucleossomos/enzimologia , Nucleossomos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Transporte Biológico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Hidrólise , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo , Fatores de Transcrição/química , Fatores de Transcrição/genética
20.
J Biol Chem ; 290(48): 28760-77, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26451043

RESUMO

Histone H3 lysine 4 (H3K4) methylation is a dynamic modification. In budding yeast, H3K4 methylation is catalyzed by the Set1-COMPASS methyltransferase complex and is removed by Jhd2, a JMJC domain family demethylase. The catalytic JmjC and JmjN domains of Jhd2 have the ability to remove all three degrees (mono-, di-, and tri-) of H3K4 methylation. Jhd2 also contains a plant homeodomain (PHD) finger required for its chromatin association and H3K4 demethylase functions. The Jhd2 PHD finger associates with chromatin independent of H3K4 methylation and the H3 N-terminal tail. Therefore, how Jhd2 associates with chromatin to perform H3K4 demethylation has remained unknown. We report a novel interaction between the Jhd2 PHD finger and histone H2A. Two residues in H2A (Phe-26 and Glu-57) serve as a binding site for Jhd2 in vitro and mediate its chromatin association and H3K4 demethylase functions in vivo. Using RNA sequencing, we have identified the functional target genes for Jhd2 and the H2A Phe-26 and Glu-57 residues. We demonstrate that H2A Phe-26 and Glu-57 residues control chromatin association and H3K4 demethylase functions of Jhd2 during positive or negative regulation of transcription at target genes. Importantly, we show that H2B Lys-123 ubiquitination blocks Jhd2 from accessing its binding site on chromatin, and thereby, we have uncovered a second mechanism by which H2B ubiquitination contributes to the trans-histone regulation of H3K4 methylation. Overall, our study provides novel insights into the chromatin binding dynamics and H3K4 demethylase functions of Jhd2.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/fisiologia , Ubiquitinação/fisiologia , Cromatina/genética , Histonas/genética , Histona Desmetilases com o Domínio Jumonji/genética , Metilação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...