Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomol NMR Assign ; 17(2): 235-238, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37632688

RESUMO

Adenylate kinase reversibly catalyzes the conversion of ATP plus AMP to two ADPs. This essential catalyst is present in every cell, and the Escherichia coli protein is often employed as a model enzyme. Our aim is to use the E. coli enzyme to understand dry protein structure and protection. Here, we report the expression, purification, steady-state assay, NMR conditions and 1H, 13C, 15N backbone resonance NMR assignments of its C77S variant. These data will also help others utilize this prototypical enzyme.


Assuntos
Adenilato Quinase , Escherichia coli , Escherichia coli/metabolismo , Adenilato Quinase/química , Adenilato Quinase/metabolismo , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Ressonância Magnética
2.
Biochem Biophys Res Commun ; 626: 121-128, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-35994823

RESUMO

Human galanin is a 30-residue neuropeptide targeted for development of analgesics, antidepressants, and anticonvulsants. While previous work from our group and others has already produced significant insights into galanin's N-terminal region, no extant structures of galanin in databases include its full-length sequence and the function of its C-terminus remains ambiguous. We report the NMR solution structure of full-length human galanin C-terminal amide, determined from 2D 1H-1H COSY, TOCSY, and ROESY NMR data. Galanin adopts an irregular helical structure across its N-terminus, likely the average of several coiling states. We present the NMR structure of a peptide encompassing the C-terminus of galanin as a stand-alone fragment. The C-terminus of full-length galanin appears to indirectly assist the intramolecular association of hydrophobic sidechains within its N-terminus, remotely rigidifying their position when compared to previously studied N-terminal galanin fragments. By contrast, there is flexibility in the C-terminus of galanin, characterized by two i to i + 2 hydrogen-bonded turns within an otherwise dynamic backbone. The C-terminal portion of the peptide renders it soluble, and plays a hitherto undescribed biophysical role in pre-organizing the galanin receptor binding epitope. We speculate that hydrophilic microdomains of signaling peptides, hormones, and perhaps intrinsically disordered proteins may also function similarly.


Assuntos
Galanina , Hormônios Peptídicos , Sequência de Aminoácidos , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Secundária de Proteína
3.
Biochemistry ; 61(12): 1151-1166, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35622960

RESUMO

The neuropeptide galanin has a 35-year history as an intriguing target in drug design owing to its implication as a potential anticonvulsant and neuronal trophic factor among many other therapeutically interesting functions including analgesia and mood alteration. In this study, we report the structural characterization of three synthetic fragments of the galanin N-terminus in buffered aqueous solution: hGal(2-12)KK, hGal(1-12)KK, and hGal(1-17)KK. High-field two-dimensional 1H-1H nuclear magnetic resonance (NMR) data were acquired for these fragments and used to derive distance restraints. We further utilized modified hydrogen bonding and dihedral restraints to reflect chemical shift patterns in the data, which revealed the signature of a weakly folded helix. Together, these sets of restraints were used to generate NMR structures of all three fragments, which depict a core of hydrophobic residues that cluster together regardless of the presence of a helical structure, and correspond to residues in the N-terminus of galanin that have been previously shown to be critical for binding its receptors. The helical structure only appears following the inclusion of Gly(1) in the sequence, and at longer sequence lengths, unlike many other peptides, the helix does not propagate. Rather, a few turns of poorly ordered helix appear to be a secondary consequence of clusters of hydrophobic sidechains that are conserved across all of the peptides in this study; the helices themselves appear ordered as a consequence of this clustering, and these clusters compare directly to those observed recently to make contacts between galanin and two of its receptor subtypes. Collapsed hydrophobic residues therefore organize and compose the functional core of human galanin and raise interesting questions about the nature of the conformational order in ligands that bind cell surface receptors.


Assuntos
Galanina , Neuropeptídeos , Sequência de Aminoácidos , Humanos , Ligação de Hidrogênio , Peptídeos/química
4.
J Phys Chem B ; 124(42): 9297-9309, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32936642

RESUMO

Nearly all biological processes, including strictly regulated protein-protein interactions fundamental in cell signaling, occur inside living cells where the concentration of macromolecules can exceed 300 g/L. One such interaction is between a 7 kDa SH3 domain and a 25 kDa intrinsically disordered region of Son of Sevenless (SOS). Despite its key role in the mitogen-activated protein kinase signaling pathway of all eukaryotes, most biophysical characterizations of this complex are performed in dilute buffered solutions where cosolute concentrations rarely exceed 10 g/L. Here, we investigate the effects of proteins, sugars, and urea, at high g/L concentrations, on the kinetics and equilibrium thermodynamics of binding between SH3 and two SOS-derived peptides using 19F NMR lineshape analysis. We also analyze the temperature dependence, which enables quantification of the enthalpic and entropic contributions. The energetics of SH3-peptide binding in proteins differs from those in the small molecules we used as control cosolutes, demonstrating the importance of using proteins as physiologically relevant cosolutes. Although most of the protein cosolutes destabilize the SH3-peptide complexes, the effects are nongeneralizable and there are subtle differences, which are likely from weak nonspecific interactions between the test proteins and the protein crowders. We also quantify the effects of cosolutes on SH3 translational and rotational diffusion to rationalize the effects on association rate constants. The absence of a correlation between the SH3 diffusion data and the kinetic data in certain cosolutes suggests that the properties of the peptide in crowded conditions must be considered when interpreting energetic effects. These studies have implications for understanding protein-protein interactions in cells and show the importance of using physiologically relevant cosolutes for investigating macromolecular crowding effects.


Assuntos
Peptídeos , Proteínas , Cinética , Ligação Proteica , Termodinâmica
5.
Vaccine ; 38(8): 1915-1924, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31959423

RESUMO

Experimental Outer surface protein (Osp) C based subunit chimeritope vaccinogens for Lyme disease (LD) were assessed for immunogenicity, structure, ability to elicit antibody (Ab) responses to divergent OspC proteins, and bactericidal activity. Chimeritopes are chimeric epitope based proteins that consist of linear epitopes derived from multiple proteins or multiple variants of a protein. An inherent advantage to chimeritope vaccinogens is that they can be constructed to trigger broadly protective Ab responses. Three OspC chimeritope proteins were comparatively assessed: Chv1, Chv2 and Chv3. The Chv proteins possess the same set of 18 linear epitopes derived from 9 OspC type proteins but differ in the physical ordering of epitopes or by the presence or absence of linkers. All Chv proteins were immunogenic in mice and rats eliciting high titer Ab. Immunoblot and enzyme linked immunosorbent assays demonstrated that the Chv proteins elicit IgG that recognizes a diverse array of OspC type proteins. The panel included OspC proteins produced by N. American and European strains of the LD spirochetes. Rat anti-Chv antisera uniformly labeled intact, non-permeabilized Borreliella burgdorferi demonstrating that vaccinal Ab can bind to targets that are naturally presented on the spirochete cell surface. Vaccinal Ab also displayed potent complement dependent-Ab mediated killing activity. This study highlights the ability of OspC chimeritopes to serve as vaccinogens that trigger potentially broadly protective Ab responses. In addition to the current use of an OspC chimeritope in a canine LD vaccine, chimeritopes can serve as key components of human LD subunit vaccines.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Borrelia burgdorferi , Lipoproteínas/imunologia , Vacinas contra Doença de Lyme/imunologia , Doença de Lyme/prevenção & controle , Animais , Anticorpos Antibacterianos/imunologia , Borrelia burgdorferi/imunologia , Epitopos/imunologia , Camundongos , Ratos
6.
J Org Chem ; 84(21): 13299-13312, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31538782

RESUMO

We report the structural characterization of the µ-selective endogenous opioid endomorphin-1 (EM-1) via an array of nuclear magnetic resonance experiments in both aqueous conditions and, for the first time, in isotropic lipid bicelles, which mimic its endogenous environment. Consistent with computationally derived hypotheses, EM-1 is found to significantly populate a compact, turn-like structure in aqueous solution. This structure is only present as a minor species when the peptide is subjected to a lipid environment, in which the presented NMR data suggests that the major conformer of EM-1 lacks internal hydrogen bonds. The interaction of EM-1 with lipid bilayers is characterized by both tryptophan fluorescence and two-dimensional diffusion ordered NMR spectroscopy; these experiments suggest that the interaction with the surface of phospholipid bilayers, operating as a change in bulk solvation, is responsible for the observed conformational rearrangement in EM-1.


Assuntos
Oligopeptídeos/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Oligopeptídeos/metabolismo , Fosfolipídeos/química , Conformação Proteica
7.
Nat Commun ; 10(1): 1296, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30899002

RESUMO

The dysregulation of Fbxo4-cyclin D1 axis occurs at high frequency in esophageal squamous cell carcinoma (ESCC), where it promotes ESCC development and progression. However, defining a therapeutic vulnerability that results from this dysregulation has remained elusive. Here we demonstrate that Rb and mTORC1 contribute to Gln-addiction upon the dysregulation of the Fbxo4-cyclin D1 axis, which leads to the reprogramming of cellular metabolism. This reprogramming is characterized by reduced energy production and increased sensitivity of ESCC cells to combined treatment with CB-839 (glutaminase 1 inhibitor) plus metformin/phenformin. Of additional importance, this combined treatment has potent efficacy in ESCC cells with acquired resistance to CDK4/6 inhibitors in vitro and in xenograft tumors. Our findings reveal a molecular basis for cancer therapy through targeting glutaminolysis and mitochondrial respiration in ESCC with dysregulated Fbxo4-cyclin D1 axis as well as cancers resistant to CDK4/6 inhibitors.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Glutamina/metabolismo , Hipoglicemiantes/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Benzenoacetamidas/farmacologia , Linhagem Celular Tumoral , Ciclina D1/genética , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Glutaminase/antagonistas & inibidores , Glutaminase/genética , Glutaminase/metabolismo , Glutamina/antagonistas & inibidores , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metformina/farmacologia , Camundongos , Terapia de Alvo Molecular , Fenformin/farmacologia , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais , Tiadiazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
FASEB J ; 33(6): 7647-7666, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30917007

RESUMO

The su(var)3-9, enhancer of zeste, trithorax (SET)/inhibitor 2 of protein phosphatase 2A (PP2A) oncoprotein binds and inhibits PP2A, composed of various isoforms of scaffolding, regulatory, and catalytic subunits. Targeting SET with a sphingolipid analog drug fingolimod (FTY720) or ceramide leads to the reactivation of tumor suppressor PP2A. However, molecular details of the SET-FTY720 or SET-ceramide, and mechanism of FTY720-dependent PP2A activation, remain unknown. Here, we report the first in solution examination of the SET-FTY720 or SET-ceramide complexes by NMR spectroscopy. FTY720-ceramide binding resulted in chemical shifts of residues residing at the N terminus of SET, preventing its dimerization or oligomerization. This then released SET from PP2ACα, resulting in PP2A activation, while monomeric SET remained associated with the B56γ. Our data also suggest that the PP2A holoenzyme, composed of PP2A-Aß, PP2A-B56γ, and PP2ACα subunits, is selectively activated in response to the formation of the SET-FTY720 complex in A549 cells. Various PP2A-associated downstream effector proteins in the presence or absence of FTY720 were then identified by stable isotope labeling with amino cells in cell culture, including tumor suppressor nonmuscle myosin IIA. Attenuation of FTY720-SET association by point mutations of residues that are involved in FTY720 binding or dephosphorylation of SET at Serine 171, enhanced SET oligomerization and the formation of the SET-PP2A inhibitory complex, leading to resistance to FTY720-dependent PP2A activation.-De Palma, R. M., Parnham, S. R., Li, Y., Oaks, J. J., Peterson, Y. K., Szulc, Z. M., Roth, B. M., Xing, Y., Ogretmen, B. The NMR-based characterization of the FTY720-SET complex reveals an alternative mechanism for the attenuation of the inhibitory SET-PP2A interaction.


Assuntos
Cloridrato de Fingolimode/farmacologia , Histona-Lisina N-Metiltransferase/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Proteína Fosfatase 2/metabolismo , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Células A549 , Dimerização , Humanos , Ligação Proteica
9.
MAbs ; 11(1): 94-105, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30570405

RESUMO

The increased interest in using monoclonal antibodies (mAbs) as a platform for biopharmaceuticals has led to the need for new analytical techniques that can precisely assess physicochemical properties of these large and very complex drugs for the purpose of correctly identifying quality attributes (QA). One QA, higher order structure (HOS), is unique to biopharmaceuticals and essential for establishing consistency in biopharmaceutical manufacturing, detecting process-related variations from manufacturing changes and establishing comparability between biologic products. To address this measurement challenge, two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) methods were introduced that allow for the precise atomic-level comparison of the HOS between two proteins, including mAbs. Here, an inter-laboratory comparison involving 26 industrial, government and academic laboratories worldwide was performed as a benchmark using the NISTmAb, from the National Institute of Standards and Technology (NIST), to facilitate the translation of the 2D-NMR method into routine use for biopharmaceutical product development. Two-dimensional 1H,15N and 1H,13C NMR spectra were acquired with harmonized experimental protocols on the unlabeled Fab domain and a uniformly enriched-15N, 20%-13C-enriched system suitability sample derived from the NISTmAb. Chemometric analyses from over 400 spectral maps acquired on 39 different NMR spectrometers ranging from 500 MHz to 900 MHz demonstrate spectral fingerprints that are fit-for-purpose for the assessment of HOS. The 2D-NMR method is shown to provide the measurement reliability needed to move the technique from an emerging technology to a harmonized, routine measurement that can be generally applied with great confidence to high precision assessments of the HOS of mAb-based biotherapeutics.


Assuntos
Anticorpos Monoclonais/química , Biofarmácia/normas , Laboratórios/normas , Espectroscopia de Ressonância Magnética/métodos , Humanos , Reprodutibilidade dos Testes
10.
J Nematol ; 50(3): 303-316, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30451416

RESUMO

Citrullus amarus ( CA ) (previously known as Citrullus lanatus var. citroides ) accessions collected in southern Africa are known to have resistance to root-knot nematodes (RKN) and are suitable rootstocks for grafted watermelon. The objective of this study was to conduct a comparative metabolomics analysis and identify unique metabolites in roots of CA accessions versus roots of watermelon cultivars ( Citrullus lanatus (Thunb.) Matsum. and Nakai var. lanatus; CL ). Nuclear magnetic resonance (NMR) technology and principal component analysis (PCA) were used to analyze and compare metabolic profiles of seven CA accessions resistant to RKN along with two RKN-susceptible watermelon cultivars (Charleston Gray and Crimson Sweet). Calculation of the Mahalanobis distance revealed that the CA United States Plant Introduction (PI) 189225 (Line number 1832) and PI 482324 (1849) have the most distinct metabolic profiles compared with the watermelon cultivars Charleston Gray and Crimson Sweet, respectively. Several amino acids identified in the CA accessions were reported in previous studies to have a nematicidal effect. The results in this study indicate that roots of watermelon accessions collected in the wild are rich in metabolic compounds. These metabolic compounds may have been diminished in watermelon cultivars as a consequence of many years of cultivation and selection for desirable fruit qualities.

11.
Biochim Biophys Acta Gen Subj ; 1861(12): 3089-3095, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28919469

RESUMO

BACKGROUND: The plants of the genus Kadsura are widely distributed in China, South Korea, and Japan. Their roots and stems are traditionally used to treat blood diseases and pain. The main bioactive constituents of Kadsura longipedunculata comprise highly oxygenated triterpenoids. Schiartane-type nortriterpenoids showed anti-HIV, anti-HBV, and cytotoxic bioactivities. For such compounds, the absolute configuration influences the bioactivities, and hence its unambiguous determination is essential. In this work, the absolute configurations of three highly oxygenated schiartane-type nortriterpenoids were unequivocally assigned using X-ray, ECD, and J-based configuration analysis and HSQC overlay data. METHODS: The ethanol extract of Kadsura longipedunculata Finet et Gagnep was purified by column chromatography using silica, Sephadex LH-20, and ODS as substrates. To help assign the absolute configuration of schiartane-type nortriterpenoids, X-ray diffraction analysis, ECD experiment compared to ab initio computed data, DP4+ analysis, HSQC overlay, NOESY, and J-based configuration analysis were carried out. Hetero- and homo-nuclear coupling constants were extracted from HETLOC experiments. RESULTS: Three new highly oxygenated triterpenoids, micrandilactone I (1), micrandilactone J (2), and 22,23-di-epi-micrandilactone J (3) were isolated. Their 2D structures were solved using NMR and HRESIMS data and their absolute configurations were elucidated using X-ray diffraction analysis, ECD experimental results compared to ab initio computed spectra, HSQC overlay, DP4+, NOESY, and J-based configuration analysis. Micrandilactone I (1) and 22,23-di-epi-micrandilactone J (3) showed moderate hepatoprotective activity against APAP-induced toxicity in HepG2 cells with cell survival rates of 53.0 and 50.2%, respectively, at 10µM (bicyclol, 49.0%), while micrandilactone J (2) was inactive. GENERAL SIGNIFICANCE: This is the first comprehensive stereochemical assignment of a non-crystalline schiartane-type nortriterpenoid like 3. This general protocol may contribute towards solving the problems hampering the assignment of the absolute configurations of other members of this class of nortriterpenoids.


Assuntos
Kadsura/química , Triterpenos/química , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Difração de Raios X
12.
J Biol Chem ; 291(36): 19006-17, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27445329

RESUMO

Spider dragline silk is a natural polymer harboring unique physical and biochemical properties that make it an ideal biomaterial. Artificial silk production requires an understanding of the in vivo mechanisms spiders use to convert soluble proteins, called spidroins, into insoluble fibers. Controlled dimerization of the spidroin N-terminal domain (NTD) is crucial to this process. Here, we report the crystal structure of the Nephila clavipes major ampullate spidroin NTD dimer. Comparison of our N. clavipes NTD structure with previously determined Euprosthenops australis NTD structures reveals subtle conformational alterations that lead to differences in how the subunits are arranged at the dimer interface. We observe a subset of contacts that are specific to each ortholog, as well as a substantial increase in asymmetry in the interactions observed at the N. clavipes NTD dimer interface. These asymmetric interactions include novel intermolecular salt bridges that provide new insights into the mechanism of NTD dimerization. We also observe a unique intramolecular "handshake" interaction between two conserved acidic residues that our data suggest adds an additional layer of complexity to the pH-sensitive relay mechanism for NTD dimerization. The results of a panel of tryptophan fluorescence dimerization assays probing the importance of these interactions support our structural observations. Based on our findings, we propose that conformational selectivity and plasticity at the NTD dimer interface play a role in the pH-dependent transition of the NTD from monomer to stably associated dimer as the spidroin progresses through the silk extrusion duct.


Assuntos
Fibroínas/química , Multimerização Proteica , Aranhas/química , Animais , Cristalografia por Raios X , Domínios Proteicos , Estrutura Quaternária de Proteína
13.
PeerJ ; 4: e1495, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26788419

RESUMO

Bacteria synchronize group behaviors using quorum sensing, which is advantageous during an infection to thwart immune cell attack and resist deleterious changes in the environment. In Pseudomonas aeruginosa, the Pseudomonas quinolone signal (Pqs) quorum-sensing system is an important component of an interconnected intercellular communication network. Two alkylquinolones, 2-heptyl-4-quinolone (HHQ) and 2-heptyl-3-hydroxy-4-quinolone (PQS), activate transcriptional regulator PqsR to promote the production of quinolone signals and virulence factors. Our work focused on the most abundant quinolone produced from the Pqs system, 2,4-dihydroxyquinoline (DHQ), which was shown previously to sustain pyocyanin production and antifungal activity of P. aeruginosa. However, little is known about how DHQ affects P. aeruginosa pathogenicity. Using C. elegans as a model for P. aeruginosa infection, we found pqs mutants only able to produce DHQ maintained virulence towards the nematodes similar to wild-type. In addition, DHQ-only producing mutants displayed increased colonization of C. elegans and virulence factor production compared to a quinolone-null strain. DHQ also bound to PqsR and activated the transcription of pqs operon. More importantly, high extracellular concentration of DHQ was maintained in both aerobic and anaerobic growth. High levels of DHQ were also detected in the sputum samples of cystic fibrosis patients. Taken together, our findings suggest DHQ may play an important role in sustaining P. aeruginosa pathogenicity under oxygen-limiting conditions.

14.
Bioorg Med Chem ; 22(13): 3423-34, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24818958

RESUMO

Heterotrimeric G-proteins are the immediate downstream effectors of G-protein coupled receptors (GPCRs). Endogenous protein guanine nucleotide dissociation inhibitors (GDIs) like AGS3/4 and RGS12/14 function through GPR/Goloco GDI domains. Extensive characterization of GPR domain peptides indicate they function as selective GDIs for Gαi by competing for the GPCR and Gßγ and preventing GDP release. We modified a GPR consensus peptide by testing FGF and TAT leader sequences to make the peptide cell permeable. FGF modification inhibited GDI activity while TAT preserved GDI activity. TAT-GPR suppresses G-protein coupling to the receptor and completely blocked α2-adrenoceptor (α2AR) mediated decreases in cAMP in HEK293 cells at 100nM. We then sought to discover selective small molecule inhibitors for Gαi. Molecular docking was used to identify potential molecules that bind to and stabilize the Gαi-GDP complex by directly interacting with both Gαi and GDP. Gαi-GTP and Gαq-GDP were used as a computational counter screen and Gαq-GDP was used as a biological counter screen. Thirty-seven molecules were tested using nucleotide exchange. STD NMR assays with compound 0990, a quinazoline derivative, showed direct interaction with Gαi. Several compounds showed Gαi specific inhibition and were able to block α2AR mediated regulation of cAMP. In addition to being a pharmacologic tool, GDI inhibition of Gα subunits has the advantage of circumventing the upstream component of GPCR-related signaling in cases of overstimulation by agonists, mutations, polymorphisms, and expression-related defects often seen in disease.


Assuntos
Descoberta de Drogas , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
15.
Biomol NMR Assign ; 5(2): 131-3, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21152998

RESUMO

The building blocks of spider dragline silk are two fibrous proteins secreted from the major ampullate gland named spidroins 1 and 2 (MaSp1, MaSp2). These proteins consist of a large central domain composed of approximately 100 tandem copies of a 35-40 amino acid repeat sequence. Non-repetitive N and C-terminal domains, of which the C-terminal domain has been implicated to transition from soluble and insoluble states during spinning, flank the repetitive core. The N-terminal domain until recently has been largely unknown due to difficulties in cloning and expression. Here, we report nearly complete assignment for all (1)H, (13)C, and (15)N resonances in the 14 kDa N-terminal domain of major ampullate spidroin 1 (MaSp1-N) of the golden orb-web spider Nephila clavipes.


Assuntos
Fibroínas/química , Ressonância Magnética Nuclear Biomolecular , Aranhas , Animais , Isótopos de Carbono , Isótopos de Nitrogênio , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...