Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1530: 391-401, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28150217

RESUMO

Metallic nanoparticles with a high atomic number release Auger electrons in response to external beam X-ray radiation. When these nanoparticles are selectively delivered to tumors, they have the potential to locally enhance the effects of radiation therapy. Optimizing the therapeutic efficacy of these nanoparticles, however, remains a challenging and time-consuming task. Here we describe three different assays that can be used to experimentally quantify and optimize the in vitro therapeutic efficacy of nanoparticle-mediated X-ray radiation enhancement. These include an IC50 extended dose response curve, clonogenic cell survival assay, and immunoblotting. Collectively, these assays provide information about whether a given nanoparticle provides radiosensitization, the extent of the radiosensitization, and the potential mechanism of radiosensitization.


Assuntos
Nanopartículas Metálicas , Radiossensibilizantes , Raios X , Biomarcadores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Concentração Inibidora 50 , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/radioterapia , Ensaio Tumoral de Célula-Tronco
2.
Int J Nanomedicine ; 11: 4735-4741, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27695329

RESUMO

Analytical and Monte Carlo simulations have been used to predict dose enhancement factors in nanoparticle-enhanced X-ray radiation therapy. Both simulations predict an increase in dose enhancement in the presence of nanoparticles, but the two methods predict different levels of enhancement over the studied energy, nanoparticle materials, and concentration regime for several reasons. The Monte Carlo simulation calculates energy deposited by electrons and photons, while the analytical one only calculates energy deposited by source photons and photoelectrons; the Monte Carlo simulation accounts for electron-hole recombination, while the analytical one does not; and the Monte Carlo simulation randomly samples photon or electron path and accounts for particle interactions, while the analytical simulation assumes a linear trajectory. This study demonstrates that the Monte Carlo simulation will be a better choice to evaluate dose enhancement with nanoparticles in radiation therapy.


Assuntos
Nanopartículas Metálicas/uso terapêutico , Nanomedicina/métodos , Radioterapia/métodos , Linhagem Celular Tumoral , Simulação por Computador , Elétrons , Humanos , Método de Monte Carlo , Neoplasias/irrigação sanguínea , Fótons , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...