Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Robot AI ; 11: 1295308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756983

RESUMO

Dance plays a vital role in human societies across time and culture, with different communities having invented different systems for artistic expression through movement (genres). Differences between genres can be described by experts in words and movements, but these descriptions can only be appreciated by people with certain background abilities. Existing dance notation schemes could be applied to describe genre-differences, however they fall substantially short of being able to capture the important details of movement across a wide spectrum of genres. Our knowledge and practice around dance would benefit from a general, quantitative and human-understandable method of characterizing meaningful differences between aspects of any dance style; a computational kinematics of dance. Here we introduce and apply a novel system for encoding bodily movement as 17 macroscopic, interpretable features, such as expandedness of the body or the frequency of sharp movements. We use this encoding to analyze Hip Hop Dance genres, in part by building a low-cost machine-learning classifier that distinguishes genre with high accuracy. Our study relies on an open dataset (AIST++) of pose-sequences from dancers instructed to perform one of ten Hip Hop genres, such as Breakdance, Popping, or Krump. For comparison we evaluate moderately experienced human observers at discerning these sequence's genres from movements alone (38% where chance = 10%). The performance of a baseline, Ridge classifier model was fair (48%) and that of the model resulting from our automated machine learning pipeline was strong (76%). This indicates that the selected features represent important dimensions of movement for the expression of the attitudes, stories, and aesthetic values manifested in these dance forms. Our study offers a new window into significant relations of similarity and difference between the genres studied. Given the rich, complex, and culturally shaped nature of these genres, the interpretability of our features, and the lightweight techniques used, our approach has significant potential for generalization to other movement domains and movement-related applications.

2.
Nature ; 628(8007): 381-390, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480888

RESUMO

Our understanding of the neurobiology of primate behaviour largely derives from artificial tasks in highly controlled laboratory settings, overlooking most natural behaviours that primate brains evolved to produce1-3. How primates navigate the multidimensional social relationships that structure daily life4 and shape survival and reproductive success5 remains largely unclear at the single-neuron level. Here we combine ethological analysis, computer vision and wireless recording technologies to identify neural signatures of natural behaviour in unrestrained, socially interacting pairs of rhesus macaques. Single-neuron and population activity in the prefrontal and temporal cortex robustly encoded 24 species-typical behaviours, as well as social context. Male-female partners demonstrated near-perfect reciprocity in grooming, a key behavioural mechanism supporting friendships and alliances6, and neural activity maintained a running account of these social investments. Confronted with an aggressive intruder, behavioural and neural population responses reflected empathy and were buffered by the presence of a partner. Our findings reveal a highly distributed neurophysiological ledger of social dynamics, a potential computational foundation supporting communal life in primate societies, including our own.


Assuntos
Encéfalo , Macaca mulatta , Neurônios , Comportamento Social , Animais , Feminino , Masculino , Agressão/fisiologia , Encéfalo/citologia , Encéfalo/fisiologia , Empatia , Asseio Animal , Processos Grupais , Macaca mulatta/classificação , Macaca mulatta/fisiologia , Macaca mulatta/psicologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Lobo Temporal/citologia , Lobo Temporal/fisiologia , Neurônios/fisiologia
3.
Proc Biol Sci ; 291(2017): 20222584, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38378153

RESUMO

All mobile organisms forage for resources, choosing how and when to search for new opportunities by comparing current returns with the average for the environment. In humans, nomadic lifestyles favouring exploration have been associated with genetic mutations implicated in attention deficit hyperactivity disorder (ADHD), inviting the hypothesis that this condition may impact foraging decisions in the general population. Here we tested this pre-registered hypothesis by examining how human participants collected resources in an online foraging task. On every trial, participants chose either to continue to collect rewards from a depleting patch of resources or to replenish the patch. Participants also completed a well-validated ADHD self-report screening assessment at the end of sessions. Participants departed resource patches sooner when travel times between patches were shorter than when they were longer, as predicted by optimal foraging theory. Participants whose scores on the ADHD scale crossed the threshold for a positive screen departed patches significantly sooner than participants who did not meet this criterion. Participants meeting this threshold for ADHD also achieved higher reward rates than individuals who did not. Our findings suggest that ADHD attributes may confer foraging advantages in some environments and invite the possibility that this condition may reflect an adaptation favouring exploration over exploitation.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Recompensa , Estilo de Vida , Autorrelato
4.
bioRxiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37905132

RESUMO

Foraging in humans and other animals requires a delicate balance between exploitation of current resources and exploration for new ones. The tendency to overharvest-lingering too long in depleting patches-is a routine behavioral deviation from predictions of optimal foraging theories. To characterize the computational mechanisms driving these deviations, we modeled foraging behavior using a virtual patch-leaving task with human participants and validated our findings in an analogous foraging task in two monkeys. Both humans and monkeys overharvested and stayed longer in patches with longer travel times compared to shorter ones. Critically, patch residence times in both species declined over the course of sessions, enhancing reward rates in humans. These decisions were best explained by a logistic transformation that integrated both current rewards and information about declining rewards. This parsimonious model demystifies both the occurrence and dynamics of overharvesting, highlighting the role of information gathering in foraging. Our findings provide insight into computational mechanisms shaped by ubiquitous foraging dilemmas, underscoring how behavioral modeling can reveal underlying motivations of seemingly irrational decisions.

5.
bioRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37461580

RESUMO

Our understanding of the neurobiology of primate behavior largely derives from artificial tasks in highly-controlled laboratory settings, overlooking most natural behaviors primate brains evolved to produce1. In particular, how primates navigate the multidimensional social relationships that structure daily life and shape survival and reproductive success remains largely unexplored at the single neuron level. Here, we combine ethological analysis with new wireless recording technologies to uncover neural signatures of natural behavior in unrestrained, socially interacting pairs of rhesus macaques within a larger colony. Population decoding of single neuron activity in prefrontal and temporal cortex unveiled robust encoding of 24 species-typical behaviors, which was strongly modulated by the presence and identity of surrounding monkeys. Male-female partners demonstrated near-perfect reciprocity in grooming, a key behavioral mechanism supporting friendships and alliances, and neural activity maintained a running account of these social investments. When confronted with an aggressive intruder, behavioral and neural population responses reflected empathy and were buffered by the presence of a partner. Surprisingly, neural signatures in prefrontal and temporal cortex were largely indistinguishable and irreducible to visual and motor contingencies. By employing an ethological approach to the study of primate neurobiology, we reveal a highly-distributed neurophysiological record of social dynamics, a potential computational foundation supporting communal life in primate societies, including our own.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...