Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 284(33): 21856-21862, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19542229

RESUMO

Thermotoga maritima is a Gram-negative, hyperthermophilic bacterium whose peptidoglycan contains comparable amounts of L- and D-lysine. We have determined the fine structure of this cell-wall polymer. The muropeptides resulting from the digestion of peptidoglycan by mutanolysin were separated by high-performance liquid chromatography and identified by amino acid analysis after acid hydrolysis, dinitrophenylation, enzymatic determination of the configuration of the chiral amino acids, and mass spectrometry. The high-performance liquid chromatography profile contained four main peaks, two monomers, and two dimers, plus a few minor peaks corresponding to anhydro forms. The first monomer was the d-lysine-containing disaccharide-tripeptide in which the D-Glu-D-Lys bond had the unusual gamma-->epsilon arrangement (GlcNAc-MurNAc-L-Ala-gamma-D-Glu-epsilon-D-Lys). The second monomer was the conventional disaccharide-tetrapeptide (GlcNAc-MurNAc-L-Ala-gamma-D-Glu-L-Lys-D-Ala). The first dimer contained a disaccharide-L-Ala as the acyl donor cross-linked to the alpha-amine of D-Lys in a tripeptide acceptor stem with the sequence of the first monomer. In the second dimer, donor and acceptor stems with the sequences of the second and first monomers, respectively, were connected by a D-Ala4-alpha-D-Lys3 cross-link. The cross-linking index was 10 with an average chain length of 30 disaccharide units. The structure of the peptidoglycan of T. maritima revealed for the first time the key role of D-Lys in peptidoglycan synthesis, both as a surrogate of L-Lys or meso-diaminopimelic acid at the third position of peptide stems and in the formation of novel cross-links of the L-Ala1(alpha-->alpha)D-Lys3 and D-Ala4(alpha-->alpha)D-Lys3 types.


Assuntos
Reagentes de Ligações Cruzadas/farmacologia , Peptidoglicano/química , Thermotoga maritima/metabolismo , Alanina/química , Parede Celular/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Dissacarídeos/química , Endopeptidases/química , Lisina/química , Espectrometria de Massas/métodos , Modelos Químicos , Peptídeos/química , Polímeros/química , Polissacarídeos/química , Fatores de Tempo
2.
Antimicrob Agents Chemother ; 53(7): 2991-7, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19237650

RESUMO

In the eubacterial cell, the peptidoglycan is perpetually hydrolyzed throughout the cell cycle by different enzymes such as lytic transglycosylases, endopeptidases, and amidases. In Escherichia coli, four N-acetylmuramoyl-l-alanine amidases, AmiA, -B, -C, and -D, are present in the periplasm. AmiA, -B, and -C are soluble enzymes, whereas AmiD is a lipoprotein anchored in the outer membrane. To determine more precisely the specificity and the kinetic parameters of AmiD, we overproduced and purified the native His-tagged AmiD in the presence of detergent and a soluble truncated form of this enzyme by removing its signal peptide and the cysteine residue responsible for its lipidic anchorage. AmiD is a zinc metalloenzyme and is inactivated by a metal chelator such as EDTA. Native His-tagged and truncated AmiD hydrolyzes peptidoglycan fragments that have at least three amino acids in their peptide chains, and the presence of an anhydro function on the N-acetylmuramic acid is not essential for its activity. The soluble truncated AmiD exhibits a biphasic kinetic time course that can be explained by the inactivation of the enzyme by the substrate. This behavior highlights a new strategy to inhibit this class of enzymes.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Cromatografia Líquida de Alta Pressão , Proteínas de Escherichia coli/genética , Cinética , N-Acetil-Muramil-L-Alanina Amidase/genética , Peptidoglicano/metabolismo , Especificidade por Substrato
3.
Biochemistry ; 47(34): 8919-28, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-18672909

RESUMO

The MraY transferase is an integral membrane protein that catalyzes an essential step of peptidoglycan biosynthesis, namely the transfer of the phospho-N-acetylmuramoyl-pentapeptide motif onto the undecaprenyl phosphate carrier lipid. It belongs to a large superfamily of eukaryotic and prokaryotic prenyl sugar transferases. No 3D structure has been reported for any member of this superfamily, and to date MraY is the only protein that has been successfully purified to homogeneity. Nineteen polar residues located in the five cytoplasmic segments of MraY appeared as invariants in the sequences of MraY orthologues. A certain number of these invariant residues were found to be conserved in the whole superfamily. To assess the importance of these residues in the catalytic process, site-directed mutagenesis was performed using the Bacillus subtilis MraY as a model. Fourteen residues were shown to be essential for MraY activity by an in vivo functional complementation assay using a constructed conditional mraY mutant strain. The corresponding mutant proteins were purified and biochemically characterized. None of these mutations did significantly affect the binding of the nucleotidic and lipidic substrates, but the k cat was dramatically reduced in almost all cases. The important residues for activity therefore appeared to be distributed in all the cytoplasmic segments, indicating that these five regions contribute to the structure of the catalytic site. Our data show that the D98 residue that is invariant in the whole superfamily should be involved in the deprotonation of the lipid substrate during the catalytic process.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Peptidoglicano/biossíntese , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Transferases/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Ativação Enzimática/efeitos dos fármacos , Teste de Complementação Genética , Concentração de Íons de Hidrogênio , Cloreto de Magnésio/farmacologia , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Transferases/química , Transferases/genética , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transformação Genética
4.
J Biol Chem ; 283(20): 13556-64, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18348984

RESUMO

We report a bioinformatic and functional characterization of Pb2, a 121-kDa multimeric protein that forms phage T5 straight fiber and is implicated in DNA transfer into the host. Pb2 was predicted to consist of three domains. Region I (residues 1-1030) was mainly organized in coiled coil and shared features of tape measure proteins. Region II (residues 1030-1076) contained two alpha-helical transmembrane segments. Region III (residues 1135-1148) included a metallopeptidase motif. A truncated version of Pb2 (Pb2-Cterm, residues 964-1148) was expressed and purified. Pb2-Cterm shared common features with fusogenic membrane polypeptides. It formed oligomeric structures and inserted into liposomes triggering their fusion. Pb2-Cterm caused beta-galactosidase release from Escherichia coli cells and in vitro peptidoglycan hydrolysis. Based on these multifunctional properties, we propose that binding of phage T5 to its receptor triggers large conformational changes in Pb2. The coiled coil region would serve as a sensor for triggering the opening of the head-tail connector. The C-terminal region would gain access to the host envelope, permitting the local degradation of the peptidoglycan and the formation of the DNA pore by fusion of the two membranes.


Assuntos
Bacteriófagos/química , Proteínas Virais/química , Proteínas da Cauda Viral/química , Sequência de Aminoácidos , Biologia Computacional/métodos , DNA Viral/química , Hidrólise , Microscopia Eletrônica , Dados de Sequência Molecular , Peptídeos/química , Polissacarídeos/química , Conformação Proteica , Estrutura Terciária de Proteína , Sacarose/química , Fatores de Tempo , Proteínas da Cauda Viral/fisiologia
5.
J Immunol ; 173(12): 7339-48, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15585858

RESUMO

Innate immune recognition of microbes is a complex process that can be influenced by both the host and the microbe. Drosophila uses two distinct immune signaling pathways, the Toll and immune deficiency (Imd) pathways, to respond to different classes of microbes. The Toll pathway is predominantly activated by Gram-positive bacteria and fungi, while the Imd pathway is primarily activated by Gram-negative bacteria. Recent work has suggested that this differential activation is achieved through peptidoglycan recognition protein (PGRP)-mediated recognition of specific forms of peptidoglycan (PG). In this study, we have further analyzed the specific PG molecular requirements for Imd activation through the pattern recognition receptor PGRP-LC in both cultured cell line and in flies. We found that two signatures of Gram-negative PG, the presence of diaminopimelic acid in the peptide bridge and a 1,6-anhydro form of N-acetylmuramic acid in the glycan chain, allow discrimination between Gram-negative and Gram-positive bacteria. Our results also point to a role for PG oligomerization in Imd activation, and we demonstrate that elements of both the sugar backbone and the peptide bridge of PG are required for optimum recognition. Altogether, these results indicate multiple requirements for efficient PG-mediated activation of the Imd pathway and demonstrate that PG is a complex immune elicitor.


Assuntos
Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Drosophila melanogaster/imunologia , Peptidoglicano/imunologia , Transdução de Sinais/imunologia , Animais , Antibacterianos/biossíntese , Sequência de Carboidratos , Proteínas de Transporte/química , Linhagem Celular , Citotoxinas/imunologia , Citotoxinas/metabolismo , Ácido Diaminopimélico/análogos & derivados , Ácido Diaminopimélico/química , Ácido Diaminopimélico/imunologia , Regulação para Baixo/imunologia , Proteínas de Drosophila/imunologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Imunidade Inata , Proteínas de Insetos/biossíntese , Proteínas de Insetos/genética , Lisina/química , Dados de Sequência Molecular , Muramidase/farmacologia , Peptidoglicano/química , Peptidoglicano/metabolismo , Transdução de Sinais/genética , Fatores de Virulência de Bordetella/química , Fatores de Virulência de Bordetella/imunologia , Fatores de Virulência de Bordetella/metabolismo
6.
PLoS Biol ; 2(9): E277, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15361936

RESUMO

The Drosophila peptidoglycan recognition protein SA (PGRP-SA) is critically involved in sensing bacterial infection and activating the Toll signaling pathway, which induces the expression of specific antimicrobial peptide genes. We have determined the crystal structure of PGRP-SA to 2.2-A resolution and analyzed its peptidoglycan (PG) recognition and signaling activities. We found an extended surface groove in the structure of PGRP-SA, lined with residues that are highly diverse among different PGRPs. Mutational analysis identified it as a PG docking groove required for Toll signaling and showed that residue Ser158 is essential for both PG binding and Toll activation. Contrary to the general belief that PGRP-SA has lost enzyme function and serves primarily for PG sensing, we found that it possesses an intrinsic L,D-carboxypeptidase activity for diaminopimelic acid-type tetrapeptide PG fragments but not lysine-type PG fragments, and that Ser158 and His42 may participate in the hydrolytic activity. As L,D-configured peptide bonds exist only in prokaryotes, this work reveals a rare enzymatic activity in a eukaryotic protein known for sensing bacteria and provides a possible explanation of how PGRP-SA mediates Toll activation specifically in response to lysine-type PG.


Assuntos
Carboxipeptidases/química , Proteínas de Transporte/química , Peptidoglicano/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , Cruzamentos Genéticos , Cristalografia por Raios X , Análise Mutacional de DNA , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Hidrólise , Lisina/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Receptores Toll-Like/metabolismo , Tirosina/química
7.
Nat Immunol ; 4(5): 478-84, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12692550

RESUMO

The Drosophila immune system discriminates between different classes of infectious microbes and responds with pathogen-specific defense reactions through selective activation of the Toll and the immune deficiency (Imd) signaling pathways. The Toll pathway mediates most defenses against Gram-positive bacteria and fungi, whereas the Imd pathway is required to resist infection by Gram-negative bacteria. The bacterial components recognized by these pathways remain to be defined. Here we report that Gram-negative diaminopimelic acid-type peptidoglycan is the most potent inducer of the Imd pathway and that the Toll pathway is predominantly activated by Gram-positive lysine-type peptidoglycan. Thus, the ability of Drosophila to discriminate between Gram-positive and Gram-negative bacteria relies on the recognition of specific forms of peptidoglycan.


Assuntos
Drosophila/imunologia , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Positivas/imunologia , Peptidoglicano/imunologia , Animais , Animais Geneticamente Modificados , Bacillus thuringiensis/imunologia , Sequência de Bases , DNA/genética , Drosophila/genética , Drosophila/microbiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Escherichia coli/imunologia , Expressão Gênica , Genes de Insetos , Proteínas de Insetos/genética , Óperon Lac , Muramidase , Pseudomonas aeruginosa/imunologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Receptores Toll-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...