Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(19): 5596-5614, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37492997

RESUMO

Climate change is one of the top three global threats to seabirds, particularly species that visit polar regions. Arctic terns migrate between both polar regions annually and rely on productive marine areas to forage, on sea ice for rest and foraging, and prevailing winds during flight. Here, we report 21st-century trends in environmental variables affecting arctic terns at key locations along their Atlantic/Indian Ocean migratory flyway during the non-breeding seasons, identified through tracking data. End-of-century climate change projections were derived from Earth System Models and multi-model means calculated in two Shared Socioeconomic Pathways: 'middle-of-the-road' and 'fossil-fuelled development' scenarios. Declines in North Atlantic primary production emerge as a major impact to arctic terns likely to affect their foraging during the 21st century under a 'fossil-fuelled development' scenario. Minimal changes are, however, projected at three other key regions visited by arctic terns (Benguela Upwelling, Subantarctic Indian Ocean and the Southern Ocean). Southern Ocean sea ice extent is likely to decline, but the magnitude of change and potential impacts on tern survival are uncertain. Small changes (<1 m s-1 ) in winds are projected in both scenarios, but with minimal likely impacts on migration routes and duration. However, Southern Ocean westerlies are likely to strengthen and contract closer to the continent, which may require arctic terns to shift routes or flight strategies. Overall, we find minor effects of climate change on the migration of arctic terns, with the exception of poorer foraging in the North Atlantic. However, given that arctic terns travel over huge spatial scales and live for decades, they integrate minor changes in conditions along their migration routes such that the sum effect may be greater than the parts. Meeting carbon emission targets is vital to slow these end-of-century climatic changes and minimise extinction risk for a suite of polar species.


Assuntos
Charadriiformes , Mudança Climática , Animais , Aquecimento Global , Oceano Atlântico , Vento , Regiões Árticas
2.
Am Nat ; 199(1): 126-140, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34978974

RESUMO

AbstractCoevolution shapes diversity within and among populations but is difficult to study directly. Time-shift experiments, where individuals from one point in time are experimentally challenged against individuals from past, contemporary, and/or future time points, are a powerful tool to measure coevolution. This approach has proven useful both in directly measuring coevolutionary change and in distinguishing among coevolutionary models. However, these data are only as informative as the time window over which they were collected, and inference from shorter coevolutionary windows might conflict with those from longer time periods. Previous time-shift experiments from natural microbial communities of horse chestnut tree leaves uncovered an apparent asymmetry, whereby bacterial hosts were more resistant to bacteriophages from all earlier points in the growing season, while phages were most infective to hosts from only the recent past. Here, we extend the time window over which these infectivity and resistance ranges are observed across years and confirm that the previously observed asymmetry holds over longer timescales. These data suggest that existing coevolutionary theory should be revised to include the possibility of differing models for hosts and their parasites and examined for how such asymmetries might reshape the predicted outcomes of coevolution.


Assuntos
Aesculus , Bacteriófagos , Microbiota , Bactérias/genética , Folhas de Planta
4.
High Alt Med Biol ; 20(4): 427-437, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31618107

RESUMO

High altitudes are physiologically challenging: the hypobaric hypoxia, cold, and increased ultraviolet radiation mean humans ascending to high altitude faster than they acclimatize risk life-threatening illnesses. Despite such challenges, birds can thrive at high altitudes and some even complete metabolically costly migrations across the world's highest mountain ranges. We outline the aspects of avian anatomy and physiology that confer advantages at each level of the oxygen transport cascade and compare them with those of human and nonhuman mammals. We also discuss additional adaptations that have been described for high-altitude specialist species of birds and how these are mirrored in high-altitude adapted mammals.


Assuntos
Aclimatação/fisiologia , Aves/fisiologia , Altitude , Doença da Altitude/fisiopatologia , Animais , Humanos , Hipóxia/fisiopatologia , Mamíferos/fisiologia , Consumo de Oxigênio/fisiologia
5.
J Exp Biol ; 222(Pt 19)2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601684

RESUMO

Birds migrating through extreme environments can experience a range of challenges while meeting the demands of flight, including highly variable ambient temperatures, humidity and oxygen levels. However, there has been limited research into avian thermoregulation during migration in extreme environments. This study aimed to investigate the effect of flight performance and high altitude on body temperature (Tb) of free-flying bar-headed geese (Anser indicus), a species that completes a high-altitude trans-Himalayan migration through very cold, hypoxic environments. We measured abdominal Tb, along with altitude (via changes in barometric pressure), heart rate and body acceleration of bar-headed geese during their migration across the Tibetan Plateau. Bar-headed geese vary the circadian rhythm of Tb in response to migration, with peak daily Tb during daytime hours outside of migration but early in the morning or overnight during migration, reflecting changes in body acceleration. However, during flight, changes in Tb were not consistent with changes in flight performance (as measured by heart rate or rate of ascent) or altitude. Overall, our results suggest that bar-headed geese are able to thermoregulate during high-altitude migration, maintaining Tb within a relatively narrow range despite appreciable variation in flight intensity and environmental conditions.


Assuntos
Migração Animal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Gansos/fisiologia , Altitude , Animais , Ritmo Circadiano/fisiologia , Voo Animal/fisiologia , Frequência Cardíaca/fisiologia , Estações do Ano , Tibet
6.
Integr Comp Biol ; 57(2): 240-251, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28859401

RESUMO

SYNOPSIS: Exercise at high altitude is extremely challenging, largely due to hypobaric hypoxia (low oxygen levels brought about by low air pressure). In humans, the maximal rate of oxygen consumption decreases with increasing altitude, supporting progressively poorer performance. Bar-headed geese (Anser indicus) are renowned high altitude migrants and, although they appear to minimize altitude during migration where possible, they must fly over the Tibetan Plateau (mean altitude 4800 m) for much of their annual migration. This requires considerable cardiovascular effort, but no study has assessed the extent to which bar-headed geese may train prior to migration for long distances, or for high altitudes. Using implanted loggers that recorded heart rate, acceleration, pressure, and temperature, we found no evidence of training for migration in bar-headed geese. Geese showed no significant change in summed activity per day or maximal activity per day. There was also no significant change in maximum heart rate per day or minimum resting heart rate, which may be evidence of an increase in cardiac stroke volume if all other variables were to remain the same. We discuss the strategies used by bar-headed geese in the context of training undertaken by human mountaineers when preparing for high altitude, noting the differences between their respective cardiovascular physiology.


Assuntos
Altitude , Migração Animal/fisiologia , Voo Animal/fisiologia , Gansos/fisiologia , Animais , Monitores de Aptidão Física , Frequência Cardíaca , Consumo de Oxigênio/fisiologia
7.
Philos Trans R Soc Lond B Biol Sci ; 370(1675)2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26150663

RESUMO

Insight to the spatial and temporal scales of coevolution is key to predicting the outcome of host-parasite interactions and spread of disease. For bacteria infecting long-lived hosts, selection to overcome host defences is just one factor shaping the course of evolution; populations will also be competing with other microbial species and will themselves be facing infection by bacteriophage viruses. Here, we examine the temporal and spatial patterns of bacterial adaptation against natural phage populations from within leaves of horse chestnut trees. Using a time-shift experiment with both sympatric and allopatric phages from either contemporary or earlier points in the season, we demonstrate that bacterial resistance is higher against phages from the past, regardless of spatial sympatry or how much earlier in the season phages were collected. Similarly, we show that future bacterial hosts are more resistant to both sympatric and allopatric phages than contemporary bacterial hosts. Together, our results suggest the evolution of relatively general bacterial resistance against phages in nature and are contrasting to previously observed patterns of phage adaptation to bacteria from the same tree hosts over the same time frame, indicating a potential asymmetry in coevolutionary dynamics.


Assuntos
Aesculus/microbiologia , Aesculus/virologia , Bacteriófagos/genética , Bacteriófagos/patogenicidade , Evolução Molecular , Interações Hospedeiro-Patógeno/genética , Especificidade de Hospedeiro , Modelos Genéticos , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...