Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34577273

RESUMO

Inter-carrier interference (ICI) in vehicle to vehicle (V2V) orthogonal frequency division multiplexing (OFDM) systems is a common problem that makes the process of detecting data a demanding task. Mitigation of the ICI in V2V systems has been addressed with linear and non-linear iterative receivers in the past; however, the former requires a high number of iterations to achieve good performance, while the latter does not exploit the channel's frequency diversity. In this paper, a transmission and reception scheme for low complexity data detection in doubly selective highly time varying channels is proposed. The technique couples the discrete Fourier transform spreading with non-linear detection in order to collect the available channel frequency diversity and successfully achieving performance close to the optimal maximum likelihood (ML) detector. When compared with the iterative LMMSE detection, the proposed system achieves a higher performance in terms of bit error rate (BER), reducing the computational cost by a third-part when using 48 subcarriers, while in an OFDM system with 512 subcarriers, the computational cost is reduced by two orders of magnitude.

2.
Micromachines (Basel) ; 12(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673049

RESUMO

Current computing platforms encourage the integration of thousands of processing cores, and their interconnections, into a single chip. Mobile smartphones, IoT, embedded devices, desktops, and data centers use Many-Core Systems-on-Chip (SoCs) to exploit their compute power and parallelism to meet the dynamic workload requirements. Networks-on-Chip (NoCs) lead to scalable connectivity for diverse applications with distinct traffic patterns and data dependencies. However, when the system executes various applications in traditional NoCs-optimized and fixed at synthesis time-the interconnection nonconformity with the different applications' requirements generates limitations in the performance. In the literature, NoC designs embraced the Software-Defined Networking (SDN) strategy to evolve into an adaptable interconnection solution for future chips. However, the works surveyed implement a partial Software-Defined Network-on-Chip (SDNoC) approach, leaving aside the SDN layered architecture that brings interoperability in conventional networking. This paper explores the SDNoC literature and classifies it regarding the desired SDN features that each work presents. Then, we described the challenges and opportunities detected from the literature survey. Moreover, we explain the motivation for an SDNoC approach, and we expose both SDN and SDNoC concepts and architectures. We observe that works in the literature employed an uncomplete layered SDNoC approach. This fact creates various fertile areas in the SDNoC architecture where researchers may contribute to Many-Core SoCs designs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...