Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1796: 148083, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108782

RESUMO

The dorsomedial nucleus of the hypothalamus (DMH) is part of the brain circuits that modulate organism responses to the circadian cycle, energy balance, and psychological stress. A large group of thyrotropin-releasing hormone (Trh) neurons is localized in the DMH; they comprise about one third of the DMH neurons that project to the lateral hypothalamus area (LH). We tested their response to various paradigms. In male Wistar rats, food restriction during adulthood, or chronic variable stress (CVS) during adolescence down-regulated adult DMH Trh mRNA levels compared to those in sedentary animals fed ad libitum; two weeks of voluntary wheel running during adulthood enhanced DMH Trh mRNA levels compared to pair-fed rats. Except for their magnitude, female responses to exercise were like those in male rats; in contrast, in female rats CVS did not change DMH Trh mRNA levels. A very strong negative correlation between DMH Trh mRNA levels and serum corticosterone concentration in rats of either sex was lost in CVS rats. CVS canceled the response to food restriction, but not that to exercise in either sex. TRH receptor 1 (Trhr) cells were numerous along the rostro-caudal extent of the medial LH. In either sex, fasting during adulthood reduced DMH Trh mRNA levels, and increased LH Trhr mRNA levels, suggesting fasting may inhibit the activity of TRHDMH->LH neurons. Thus, in Wistar rats DMH Trh mRNA levels are regulated by negative energy balance, exercise and chronic variable stress through sex-dependent and -independent pathways.


Assuntos
Hipotálamo , Hormônio Liberador de Tireotropina , Animais , Feminino , Masculino , Ratos , Corticosterona , Hipotálamo/metabolismo , Núcleo Mediodorsal do Tálamo , Atividade Motora , Ratos Wistar , Receptores do Hormônio Liberador da Tireotropina/genética , Receptores do Hormônio Liberador da Tireotropina/metabolismo , RNA Mensageiro/metabolismo , Hormônio Liberador de Tireotropina/genética , Hormônio Liberador de Tireotropina/metabolismo
2.
Front Endocrinol (Lausanne) ; 12: 746924, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745011

RESUMO

The hypothalamus-pituitary-thyroid-axis (HPT) is one of the main neuroendocrine axes that control energy expenditure. The activity of hypophysiotropic thyrotropin releasing hormone (TRH) neurons is modulated by nutritional status, energy demands and stress, all of which are sex dependent. Sex dimorphism has been associated with sex steroids whose concentration vary along the life-span, but also to sex chromosomes that define not only sexual characteristics but the expression of relevant genes. In this review we describe sex differences in basal HPT axis activity and in its response to stress and to metabolic challenges in experimental animals at different stages of development, as well as some of the limited information available on humans. Literature review was accomplished by searching in Pubmed under the following words: "sex dimorphic" or "sex differences" or "female" or "women" and "thyrotropin" or "thyroid hormones" or "deiodinases" and "energy homeostasis" or "stress". The most representative articles were discussed, and to reduce the number of references, selected reviews were cited.


Assuntos
Metabolismo Energético/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Caracteres Sexuais , Estresse Fisiológico/fisiologia , Glândula Tireoide/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Feminino , Humanos , Masculino
3.
Artigo em Inglês | MEDLINE | ID: mdl-31297093

RESUMO

The activity of the hypothalamus-pituitary-thyroid (HPT) axis is inhibited by energy deficit, by acute or chronic stress, but activated by cold exposure or exercise. Because stress curtails acute cold induced activation of HPT, we evaluated the effect of chronic stress on HPT axis response to voluntary exercise, a persistent energy-demanding situation. Adult male and female Wistar rats were exposed to restraint stress, 30 min/day for 2 weeks, or to isolation (Iso) [post-natal day [PND] 30-63]. Exercise was performed (7 p.m.-7 a.m.) in a running wheel, sedentary controls stayed in individual cages (Sed); at 7 a.m. they were housed with their cage mate or individually (Iso); food intake by the exercised group was measured day and night to pair-fed Sed. At sacrifice, hormones, mRNA levels and tissue weights were quantified. Control or restrained adult rats had access to running wheel daily for 2 weeks. Compared to C, exercise decreased white adipose tissue (WAT) mass in females and males, increased hypothalamic paraventricular nucleus (PVN)-Trh expression in males proportionally to exercise performed, and increased TSH and T4 serum concentration in females. These changes were not detected in restrained groups. Starting at PND 63 control (2/cage) and isolated (1/cage) rats either exercised on 10 alternated nights or were sedentary. In control male animals, compared to Sed rats, exercise did not decrease WAT mass, nor changed HPT axis activity, but increased Pomc and deiodinase 2 (Dio2) expression in mediobasal hypothalamus (MBH), adrenergic receptor ß3 and uncoupling protein-1 in brown adipose tissue. In control female animals, exercise decreased WAT mass, increased Pomc, Dio2, and Trhde expression in MBH, and TSH serum concentration. Iso females had lower TSH and T4 serum concentration, Dio2 and Trhde expression in MBH than controls. The stress response was higher in isolated males than females, but in males it did not alter the effects of exercise, in contrast to isolated females that had a blunted response to exercise compared to controls. In conclusion, chronic stress interferes with metabolic effects produced by exercise, such as loss of WAT mass, coincident with dampening of HPT activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...