Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39031784

RESUMO

BACKGROUND: Viticulture has adapted foliar applications of biostimulants as a tool to improve crop quality. Recently, nanotechnology has been incorporated as a strategy to reduce the loss of biostimulants and treat nutrient deficiencies. Therefore, the present study aimed to investigate the effect of foliar applications of amorphous calcium phosphate nanoparticles (ACP) doped with methyl jasmonate (ACP-MeJA) and urea (ACP-Ur), individually or together (ACP-MeJA+Ur), on the content of volatile compounds in 'Tempranillo' grapes, compared to the conventional application of MeJA and Ur, individually or in combination (MeJA+Ur). RESULTS: The results showed that nanoparticle treatments reduced the total C6 compounds and some carbonyl compounds in the grape musts. This is of novel interest because their presence at high levels is undesirable to quality. In addition, some aroma-positive compounds such as nerol, neral, geranyl acetone, ß-cyclocitral, ß-ionone, 2-phenylethanal and 2-phenylethanol increased, despite applying MeJA and Ur at a lower dose. CONCLUSION: Consequently, although few differences in grape volatile composition were detected, nanotechnology could be an option for improving the aromatic quality of grapes, at the same time as reducing the required doses of biostimulants and generating more sustainable agricultural practices. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
ACS Appl Mater Interfaces ; 16(22): 29305-29313, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38798175

RESUMO

Although agrochemical practices can enhance agricultural productivity, their intensive application has resulted in the deterioration of ecosystems. Therefore, it is necessary to develop more efficient and less toxic methods against pests and infections while improving crop productivity. Moving toward sustainable development, in this work, we originally described the preparation of a composite (ZIF-8@HA) consisting of the coating of zeolitic-like metal-organic framework (MOF) ZIF-8 (based on Zn, an essential micronutrient in plants with antibacterial, antifungal, and antifouling properties) with hydroxyapatite (HA) nanoparticles (i.e., nanofertilizer). The interaction between the HA and ZIF-8 has been characterized through a combination of techniques, such as microscopic techniques, where the presence of a HA coating is demonstrated; or by analysis of the surface charge with a dramatic change in the Z-potential (from +18.7 ± 0.8 to -27.6 ± 0.7 mV for ZIF-8 and ZIF-8@HA, respectively). Interestingly, the interaction of HA with ZIF-8 delays the MOF degradation (from 4 h for pristine ZIF-8 to 168 h for HA-coated material), providing a slower and gradual release of zinc. After a comprehensive characterization, the potential combined fertilizer and bactericidal effect of ZIF-8@HA was investigated in wheat (Triticum aestivum) seeds and Pseudomonas syringae (Ps). ZIF-8@HA (7.3 ppm) demonstrated a great fertilizer effect, increasing shoot (9.4 %) and root length (27.1 %) of wheat seeds after 11 days at 25 °C under dark conditions, improving the results obtained with HA, ZIF-8, or ZnSO4 or even physically mixed constituents (HA + ZIF-8). It was also effective in the growth inhibition (>80 % of growth inhibition) of Ps, a vegetal pathogen causing considerable crop decline. Therefore, this work demonstrates the potential of MOF@HA composites and paves the way as a promising agrochemical with improved fertilizer and antibacterial properties.


Assuntos
Agroquímicos , Durapatita , Estruturas Metalorgânicas , Durapatita/química , Durapatita/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Agroquímicos/química , Agroquímicos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Zeolitas/química , Zeolitas/farmacologia , Triticum/química , Triticum/efeitos dos fármacos , Imidazóis
3.
J Sci Food Agric ; 104(2): 598-610, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37615514

RESUMO

BACKGROUND: Elicitors induce defense mechanisms, triggering the synthesis of secondary metabolites. Irrigation has implications for a more sustainable viticulture and for grape composition. The aim was to investigate the influence on grape aroma composition during 2019 and 2020 of the foliar application of amorphous calcium phosphate (ACP) nanoparticles and ACP doped with methyl jasmonate (ACP-MeJ), as an elicitor, with rainfed or regulated deficit irrigation (RDI) grapevines. RESULTS: In both growing seasons, nearly all terpenoids, C13 norisoprenoids, benzenoid compounds and alcohols increased with ACP-MeJ under the RDI regimen. In 2019, under the rainfed regime, ACP treatment increased limonene, p-cymene, α-terpineol, 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN), 2-ethyl-1-hexanol, (E,E)-2,4-heptadienal, and MeJ concentration in comparison with control grapes. In 2020, the rainfed regime treated with ACP-MeJ only increased the nonanoic acid content. Grape volatile compounds were most influenced by season and watering status whereas the foliar application mainly affected the terpenoids. CONCLUSION: A RDI regime combined with the elicitor ACP-MeJ application could improve the synthesis of certain important volatile compounds, such as p-cymene, linalool, α-terpineol, geranyl acetone, ß-ionone, 2-phenylethanol, benzyl alcohol, and nonanoic acid in Monastrell grapes. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Vitis , Vinho , Vitis/química , Monoterpenos Cicloexânicos/análise , Vinho/análise , Frutas/química
4.
Int J Nanomedicine ; 18: 5075-5093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701822

RESUMO

Introduction: Pancreatic cancer (PC) shows a very poor response to current treatments. Development of drug resistance is one of the causes of the therapy failure, being PARP1 (poly ADP-ribose polymerase 1) a relevant protein in the resistance mechanism. In this work, we have functionalized calcium phosphate-based nanoparticles (NPs) with Olaparib (OLA, a PARP-1 inhibitor) in combination with ascorbic acid (AA), a pro-oxidative agent, to enhance their individual effects. Methods: Amorphous Calcium Phosphate (ACP) NPs were synthesized through a biomimetic approach and then functionalized with OLA and AA (NP-ACP-OLA-AA). After evaluation of the loading capacity and release kinetic, cytotoxicity, cell migration, immunofluorescence, and gene expression assays were performed using pancreatic tumor cell lines. In vivo studies were carried out on tumors derived from the PANC-1 line in NOD SCID gamma (NSG) mice. Results: NP-ACP-OLA-AA was loaded with 13%wt of OLA (75% loading efficiency) and 1% of AA, respectively. The resulting dual nanosystem exhibited a gradual release of OLA and AA, being the latter protected from degradation in solution. This ensured the simultaneous availability of OLA and AA for a longer period, at least, during the entire time of in vitro cell experiments (72 hours). In vitro studies indicated that NP-ACP-OLA-AA showed the best cytotoxic effect outperforming that of the free OLA and a higher genotoxicity and apoptosis-mediated cytotoxic effect in human pancreatic ductal adenocarcinoma cell line. Interestingly, the in vivo assays using immunosuppressed mice with PANC-1-induced tumors revealed that NP-ACP-OLA-AA produced a higher tumor volume reduction (59.1%) compared to free OLA (28.3%) and increased the mice survival. Conclusion: Calcium phosphate NPs, a highly biocompatible and biodegradable system, were an ideal vector for the OLA and AA co-treatment in PC, inducing significant therapeutic benefits relative to free OLA, including cytotoxicity, induction of apoptosis, inhibition of cell migration, tumor growth, and survival.


Assuntos
Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Camundongos SCID , Neoplasias Pancreáticas/tratamento farmacológico , Ácido Ascórbico/farmacologia , Neoplasias Pancreáticas
5.
Environ Sci Technol ; 57(40): 14950-14960, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37753594

RESUMO

Calcium phosphate nanoparticles were doped with zinc ions to produce multifunctional nanomaterials for efficient agronomic fortification and protection of plants. The resulting round-shaped nanoparticles (nanoZn) were composed of 20.3 wt % Ca, 14.8 wt % P, and 13.4 wt % Zn and showed a pH-controlled solubility. NanoZn were stable in aqueous solutions at neutral pH but dissolved in citric acid at pH 4.5 (i.e., the pH inside tomato fruits), producing a pH-responsive delivery of the essential nutrients Ca, P, and Zn. In fact, the foliar application of nanoZn on tomato plants provided tomatoes with the highest Zn, Ca, and P contents (causing, respectively, a 65, 65, and 15% increase with respect to a conventional treatment with ZnSO4) and the highest yields. Additionally, nanoZn (100 ppm of Zn) inhibited in vitro the growth of Pseudomonas syringae (Ps), the main cause of bacterial speck, and significantly reduced Ps incidence and mortality in tomato seeds, previously inoculated with the pathogen. Therefore, nanoZn present dual agricultural applicability, enriching crops with nutrients with important metabolic functions in humans and simultaneously protecting the plants against important bacterial-based diseases, with considerable negative impact in crop production.


Assuntos
Nanoestruturas , Solanum lycopersicum , Humanos , Biofortificação/métodos , Zinco , Produtos Agrícolas
6.
Biomater Adv ; 154: 213587, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633007

RESUMO

In this work, Engineered Living Materials (ELMs), based on the combination of genetically-modified bacteria and mineral-reinforced organic matrices, and endowed with self-healing or regenerative properties and adaptation to specific biological environments were developed. Concretely, we produced ELMs combining human mesenchymal stem cells (hMSCs) and Lactococcus lactis (L. lactis), which was specifically programmed to deliver bone morphogenetic protein (BMP-2) upon external stimulation using nisin, into mineralized alginate matrices. The hybrid organic/inorganic matrix was built through a protocol, inspired by bone mineralization, in which alginate (Alg) assembly and apatite (HA) mineralization occurred simultaneously driven by calcium ions. Chemical composition, structure and reologhical properties of the hybrid 3D matrices were dedicately optimized prior the incorportation of the living entities. Then, the same protocol was reproduced in the presence of hMSC and engineered L. lactis that secrete BMP-2 resulting in 3D hybrid living hydrogels. hMSC viability and osteogenic differentiation in the absence and presence of the bacteria were evaluated by live/dead and quantitative real-time polymerase chain reaction (qPCR) and immunofluorescence assays, respectively. Results demonstrate that these 3D engineered living material support osteogenic differentiation of hMSCs due to the synergistic effect between HA and the growth factors BMP-2 delivered by L. lactis.


Assuntos
Calcinose , Células-Tronco Mesenquimais , Humanos , Osteogênese/genética , Alicerces Teciduais/química , Células-Tronco Mesenquimais/metabolismo , Alginatos , Diferenciação Celular , Calcinose/metabolismo
7.
Molecules ; 28(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771144

RESUMO

The structural composition of the cell wall of grape skins is related to the cell wall integrity and subsequent extraction of the different compounds that are contained inside vacuoles and also the cell wall breakdown products. Different reports have established that methyl jasmonate (MeJ) produces changes in the composition of the grape skin cell wall. The use of elicitors to promote the production of secondary metabolites in grapes has been studied in several reports; however, its study linked to nanotechnology is less developed. These facts led us to study the effect of methyl jasmonate (MeJ) and nanoparticles doped with MeJ (nano-MeJ) on the cell walls of Monastrell grapes during three seasons. Both treatments tended to increase cell wall material (CWM) and caused changes in different components of the skin cell walls. In 2019 and 2021, proteins were enlarged in both MeJ and nano-MeJ-treated grapes. A general decrease in total phenolic compounds was detected with both treatments, in addition to an increment in uronic acids when the grapes were well ripened. MeJ and nano-MeJ produced a diminution in the amount of cellulose in contrast to an increase in hemicellulose. It should be noted that the effects with nano-MeJ treatment occurred at a dose 10 times lower than with MeJ treatment.


Assuntos
Vitis , Vinho , Vitis/química , Vinho/análise , Acetatos/química , Parede Celular/química , Frutas/química
8.
Pharmaceuticals (Basel) ; 15(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35631414

RESUMO

Phthalides are a group of compounds with relevant biological activities in different areas such as cytotoxicity, anti-stroke activity, neuroprotection, and inflammation, among others. In this study we designed and synthesized a series of 3-arylphthalide derivatives in order to identify their antioxidant and anti-inflammatory activities. The synthetic methodology was established in terms of atom and step economy through a dehydrative coupling reaction between 3-hydroxyphthalide and different properly functionalized arene rings. The evaluation of the antioxidant activity was performed by the ABTS assay and for the anti-inflammatory activity the inhibition of LPS-induced nitric oxide (NO) production in microglial cells Bv.2 and macrophage cells RAW 264.7 was measured. The synthesized compound 3-(2,4-dihydroxyphenyl)phthalide (5a) showed better antioxidant activity than the Trolox standard and caused strong inhibition of NO production in LPS-stimulated Bv.2 and RAW 264.7 cells. In addition, compound 5a reduced the expression of the pro-inflammatory cytokines Il1b and Il6 in RAW 264.7 cells. These results, which are the first account of the anti-inflammatory activity of 3-arylphthalides, suggest that compound 5a could be a promising candidate for more advanced anti-inflammatory studies.

9.
Molecules ; 27(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35566227

RESUMO

The application of methyl jasmonate (MeJ) as an elicitor to enhance secondary metabolites in grapes and wines has been studied, but there is little information about its use in conjunction with nanotechnology and no information about its effects on wine volatile compounds. This led us to study the impact of nanoparticles doped with MeJ (Nano-MeJ, 1mM MeJ) on the volatile composition of Monastrell wines over three seasons, compared with the application of MeJ in a conventional way (10 mM MeJ). The results showed how both treatments enhanced fruity esters in wines regardless of the vintage year, although the increase was more evident when grapes were less ripe. These treatments also achieved these results in 2019 in the cases of 1-propanol, ß-phenyl-ethanol, and methionol, in 2020 in the cases of hexanol and methionol, and in 2021, but only in the case of hexanol. On the other hand, MeJ treatment also increased the terpene fraction, whereas Nano-MeJ, at the applied concentration, did not increase it in any of the seasons. In summary, although not all families of volatile compounds were increased by Nano-MeJ, the Nano-MeJ treatment generally increased the volatile composition to an extent similar to that obtained with MeJ used in a conventional way, but at a 10 times lower dose. Therefore, the use of nanotechnology could be a good option for improving the quality of wines from an aromatic point of view, while reducing the necessary dosage of agrochemicals, in line with more sustainable agricultural practices.


Assuntos
Vitis , Compostos Orgânicos Voláteis , Vinho , Acetatos , Ciclopentanos , Frutas/química , Hexanóis/metabolismo , Odorantes/análise , Oxilipinas/metabolismo , Vitis/química , Compostos Orgânicos Voláteis/análise , Vinho/análise
10.
Biomolecules ; 11(11)2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34827629

RESUMO

Nitrogen composition on grapevines has a direct effect on the quality of wines since it contributes to develop certain volatile compounds and assists in the correct kinetics of alcoholic fermentation. Several strategies can be used to ensure nitrogen content in grapes and one of them could be the use of elicitors such as methyl jasmonate. The use of this elicitor has been proven to be efficient in the production of secondary metabolites which increases the quality of wines, but its use also has some drawbacks such as its low water solubility, high volatility, and its expensive cost. This study observes the impact on the amino acid and ammonium composition of must and wine of Monastrell grapes that have been treated with methyl jasmonate (MeJ) and methyl jasmonate n-doped calcium phosphate nanoparticles (MeJ-ACP). The first objective of this study was to compare the effect of these treatments to determine if the nitrogenous composition of the berries and wines increased. The second aim was to determine if the nanoparticle treatments showed similar effects to conventional treatments so that the ones which are more efficient and sustainable from an agricultural point of view can be selected. The results showed how both treatments increased amino acid composition in grapes and wines during two consecutive seasons and as well as the use of MeJ-ACP showed better results compared to MeJ despite using less quantity (1 mM compared to 10 mM typically). So, this application form of MeJ could be used as an alternative in order to carry out a more efficient and sustainable agriculture.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Nanopartículas/química , Nitrogênio/análise , Oxilipinas/farmacologia , Vitis/química , Vinho/análise , Aminoácidos/análise , Compostos de Amônio/análise , Análise Discriminante , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...