Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746184

RESUMO

Structural birth defects affect 3-4% of all live births and, depending on the type, tend to manifest in a sex-biased manner. Orofacial clefts (OFCs) are the most common craniofacial structural birth defects and are often divided into cleft lip with or without cleft palate (CL/P) and cleft palate only (CP). Previous studies have found sex-specific risks for CL/P, but these risks have yet to be evaluated in CP. CL/P is more common in males and CP is more frequently observed in females, so we hypothesized there would also be sex-specific differences for CP. Using a trio-based cohort, we performed sex-stratified genome-wide association studies (GWAS) based on proband sex followed by a genome-wide gene-by-sex (GxS) interaction testing. There were 13 loci significant for GxS interactions, with the top finding in LTBP1 (RR=3.37 [2.04 - 5.56], p=1.93x10 -6 ). LTBP1 plays a role in regulating TGF-B bioavailability, and knockdown in both mice and zebrafish lead to craniofacial anomalies. Further, there is evidence for differential expression of LTBP1 between males and females in both mice and humans. Therefore, we tested the association between the imputed genetically regulated gene expression of genes with significant GxS interactions and the CP phenotype. We found significant association for LTBP1 in cell cultured fibroblasts in female probands (p=0.0013) but not in males. Taken altogether, we show there are sex-specific risks for CP that are otherwise undetectable in a combined sex cohort, and LTBP1 is a candidate risk gene, particularly in females.

2.
medRxiv ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37425698

RESUMO

Multiple reference panels of a given tissue or multiple tissues often exist, and multiple regression methods could be used for training gene expression imputation models for TWAS. To leverage expression imputation models (i.e., base models) trained with multiple reference panels, regression methods, and tissues, we develop a Stacked Regression based TWAS (SR-TWAS) tool which can obtain optimal linear combinations of base models for a given validation transcriptomic dataset. Both simulation and real studies showed that SR-TWAS improved power, due to increased effective training sample sizes and borrowed strength across multiple regression methods and tissues. Leveraging base models across multiple reference panels, tissues, and regression methods, our real application studies identified 6 independent significant risk genes for Alzheimer's disease (AD) dementia for supplementary motor area tissue and 9 independent significant risk genes for Parkinson's disease (PD) for substantia nigra tissue. Relevant biological interpretations were found for these significant risk genes.

3.
HGG Adv ; 3(1): 100068, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35047855

RESUMO

Standard transcriptome-wide association study (TWAS) methods first train gene expression prediction models using reference transcriptomic data and then test the association between the predicted genetically regulated gene expression and phenotype of interest. Most existing TWAS tools require cumbersome preparation of genotype input files and extra coding to enable parallel computation. To improve the efficiency of TWAS tools, we developed Transcriptome-Integrated Genetic Association Resource V2 (TIGAR-V2), which directly reads Variant Call Format (VCF) files, enables parallel computation, and reduces up to 90% of computation cost (mainly due to loading genotype data) compared to the original version. TIGAR-V2 can train gene expression imputation models using either nonparametric Bayesian Dirichlet process regression (DPR) or Elastic-Net (as used by PrediXcan), perform TWASs using either individual-level or summary-level genome-wide association study (GWAS) data, and implement both burden and variance-component statistics for gene-based association tests. We trained gene expression prediction models by DPR for 49 tissues using Genotype-Tissue Expression (GTEx) V8 by TIGAR-V2 and illustrated the usefulness of these Bayesian cis-expression quantitative trait locus (eQTL) weights through TWASs of breast and ovarian cancer utilizing public GWAS summary statistics. We identified 88 and 37 risk genes, respectively, for breast and ovarian cancer, most of which are either known or near previously identified GWAS (∼95%) or TWAS (∼40%) risk genes and three novel independent TWAS risk genes with known functions in carcinogenesis. These findings suggest that TWASs can provide biological insight into the transcriptional regulation of complex diseases. The TIGAR-V2 tool, trained Bayesian cis-eQTL weights, and linkage disequilibrium (LD) information from GTEx V8 are publicly available, providing a useful resource for mapping risk genes of complex diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...