Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e29679, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707295

RESUMO

Horizontal gene transfer (HGT) is a major factor in the spread of antibiotic resistant genes (ARG). Transformation, one mode of HGT, involves the acquisition and expression of extracellular DNA (eDNA). eDNA in soils is degraded rapidly by extracellular nucleases. However, if bound to a clay particle, eDNA can persist for long periods of time without losing its transformation ability. To better understand the mechanism of eDNA persistence in soil, this experiment assessed the effects of 1) clay mineralogy, 2) mixed salt solution, 3) plasmid size on DNA adsorption to clay and 4) breakthrough behavior of three differently sized plasmids in an environmentally relevant solution. Batch test methods were used to determine adsorption trends of three differently sized DNA plasmids, pUC19, pBR322, and pTYB21, to several pure clay minerals, goethite (α-FeOOH), illite, and kaolinite, and one environmental soil sample. Results show not all sorbents have equal adsorption capacity based on surface area with adsorption capacities decreasing from goethite > illite = kaolinite > bulk soil, and low ionic strength solutions will likely not significantly alter sorption trends. Additionally, plasmid DNA size (i.e., length) was shown to be a significant predictor of adsorption efficiency and that size affects DNA breakthrough, with breakthroughs occurring later with larger plasmids. Given that DNA persistence is linked to its adsorption to soil constituents and breakthrough, eDNA size is likely an important contributor to the spread of ARG within natural microbial communities.

2.
Sci Total Environ ; 921: 170859, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38365032

RESUMO

Animal movement behavior provides insight into organismal and ecological function. These functions are often disturbed by anthropogenic influences, such as urbanization and habitat fragmentation, yet the effects of long-term exposures to environmental contaminants on movement have yet to be examined. The long lifespans and broad diets of crocodilians often lead to bioaccumulation of persistent contaminants and confer a marked vulnerability to consequent physiological effects. In this study, we investigate the relationships between blood concentrations of mercury (Hg), a widespread contaminant with well characterized neurotoxicity, and movement patterns in free living, naturally exposed American alligators (Alligator mississippiensis). We sampled adult male alligators from two former nuclear cooling reservoirs with different Hg contamination histories and placed GPS transmitters on a subset of individuals from each reservoir (13 total). Data collected over the ensuing two years were analyzed using a linear mixed effects framework combined with AICc model selection to resolve the relationships linking seasonal alligator movement (daily activity (s) and daily distance (m)) and home range to climate conditions, individual traits, and blood Hg concentrations (mg/kg; wet weight). We found that climate conditions, alligator size (snout-vent-length), and blood Hg concentrations all influence alligator daily activity but do not contribute to alligator daily movement (distance). Furthermore, we found that blood Hg concentrations were strongly correlated with seasonal home range size where individuals with elevated Hg had larger home ranges in spring, fall, and winter. These findings provide insight into how climate, anthropogenic contaminants, and individual traits relate to alligator movement patterns across seasons.


Assuntos
Jacarés e Crocodilos , Mercúrio , Humanos , Animais , Masculino , Mercúrio/análise , Carga Corporal (Radioterapia) , Comportamento Animal , Estações do Ano
3.
Ecol Evol ; 14(2): e10915, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38371857

RESUMO

Maternal provisioning and the developmental environment are fundamental determinants of offspring traits, particularly in oviparous species. However, the extent to which embryonic responses to these factors differ across populations to drive phenotypic variation is not well understood. Here, we examine the contributions of maternal provisioning and incubation temperature to hatchling morphological and metabolic traits across four populations of the American alligator (Alligator mississippiensis), encompassing a large portion of the species' latitudinal range. Our results show that whereas the influence of egg mass is generally consistent across populations, responses to incubation temperature show population-level variation in several traits, including mass, head length, head width, and residual yolk mass. Additionally, the influence of incubation temperature on developmental rate is greater at northern populations, while the allocation of maternal resources toward fat body mass is greater at southern populations. Overall, our results suggest that responses to incubation temperature, relative to maternal provisioning, are a larger source of interpopulation phenotypic variation and may contribute to the local adaptation of populations.

4.
Aging (Albany NY) ; 16(2): 1002-1020, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38285616

RESUMO

Changes in DNA methylation with age are observed across the tree of life. The stereotypical nature of these changes can be modeled to produce epigenetic clocks capable of predicting chronological age with unprecedented accuracy. Despite the predictive ability of epigenetic clocks and their utility as biomarkers in clinical applications, the underlying processes that produce clock signals are not fully resolved, which limits their interpretability. Here, we develop a computational approach to spatially resolve the within read variability or "disorder" in DNA methylation patterns and test if age-associated changes in DNA methylation disorder underlie signals comprising epigenetic clocks. We find that epigenetic clock loci are enriched in regions that both accumulate and lose disorder with age, suggesting a link between DNA methylation disorder and epigenetic clocks. We then develop epigenetic clocks that are based on regional disorder of DNA methylation patterns and compare their performance to other epigenetic clocks by investigating the influences of development, lifespan interventions, and cellular dedifferentiation. We identify common responses as well as critical differences between canonical epigenetic clocks and those based on regional disorder, demonstrating a fundamental decoupling of epigenetic aging processes. Collectively, we identify key linkages between epigenetic disorder and epigenetic clocks and demonstrate the multifaceted nature of epigenetic aging in which stochastic processes occurring at non-random loci produce predictable outcomes.


Assuntos
Epigênese Genética , Longevidade , Longevidade/genética , Metilação de DNA , Epigenômica
5.
Nat Commun ; 14(1): 7731, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007590

RESUMO

Epigenetic drift or "disorder" increases across the mouse lifespan and is suggested to underlie epigenetic clock signals. While the role of epigenetic drift in determining maximum lifespan across species has been debated, robust tests of this hypothesis are lacking. Here, we test if epigenetic disorder at various levels of genomic resolution explains maximum lifespan across four mammal species. We show that epigenetic disorder increases with age in all species and at all levels of genomic resolution tested. The rate of disorder accumulation occurs faster in shorter lived species and corresponds to species adjusted maximum lifespan. While the density of cytosine-phosphate-guanine dinucleotides ("CpGs") is negatively associated with the rate of age-associated disorder accumulation, it does not fully explain differences across species. Our findings support the hypothesis that the rate of epigenetic drift explains maximum lifespan and provide partial support for the hypothesis that CpG density buffers against epigenetic drift.


Assuntos
Epigênese Genética , Longevidade , Animais , Camundongos , Longevidade/genética , Metilação de DNA/genética , Ilhas de CpG/genética , Mamíferos/genética , Envelhecimento/genética
6.
Biol Lett ; 19(8): 20230097, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37554010

RESUMO

The thermal environment experienced by developing embryos can influence the utilization of maternally provisioned resources. Despite being particularly consequential for oviparous ectotherms, these dynamics are largely unexplored within ecotoxicological frameworks. Here, we test if incubation temperature interacts with maternally transferred mercury to affect subsequent body burdens and tissue distributions of mercury in hatchling American alligators (Alligator mississippiensis). Nine clutches of alligator eggs were collected from a mercury-contaminated reservoir and incubated at either female- or male-promoting temperatures. Total mercury (THg) concentration was measured in egg yolk collected during incubation and in a suite of tissues collected from hatchlings. THg concentrations in residual yolk and blood were higher in hatchlings incubated at cooler, female-promoting temperatures compared to the warmer, male-promoting temperatures. THg concentrations in most tissues were positively correlated with THg concentrations in blood and dermis, and egg yolk THg concentration was the best predictor of THg concentration in many resultant tissues. Our results highlight a hereto unknown role of the developmental environment in mediating tissue specific uptake of contaminants in an oviparous reptile.


Assuntos
Oviparidade , Animais , Masculino , Feminino , Oviparidade/efeitos dos fármacos , Mercúrio/toxicidade , Temperatura , Jacarés e Crocodilos
7.
Sci Total Environ ; 870: 162010, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36739038

RESUMO

Mercury is a toxic and pervasive environmental contaminant that can be transferred from mother to offspring during development. Consequences of maternally-transferred mercury have been observed in vertebrate taxa, including reduced clutch viability, reduced offspring size, and behavioral alterations. These sublethal effects have been assumed to decrease survivorship, though this is seldom assessed. Here, we examined how maternally-transferred mercury interacts with incubation temperature to influence reproductive success, offspring behavior, and subsequent survival in the American alligator (Alligator mississippiensis). We collected nine clutches of eggs from a mercury contaminated reservoir on the Savannah River Site, South Carolina, and incubated eggs at either female- or male-promoting temperatures. Clutch-averaged mercury in egg yolk was high relative to other studies in crocodilians and ranged from 0.248 to 0.554 ppm compared to 0.018-0.052 ppm at a site with low levels of mercury contamination; mercury levels in hatchling blood ranged from 0.090 to 0.490 ppm (x¯ = 0.240 ppm, n = 158). We found few, mostly negligible correlations between life history traits and mercury but noted a positive relationship with egg mass, possibly mediated by correlated maternal effects such as resource provisioning. Incubation temperature exerted strong effects on hatchling phenotypes, with warmer, male-promoting temperatures producing larger and bolder hatchlings. Presumptive females, produced from cooler incubation temperatures, spent more time in warm areas during behavior trials. Hatchlings were released 10-15 days post-hatch and surveyed over eight months to assess survival. Survivorship was positively correlated with hatchling size and negatively correlated with proportional time spent in warm areas. Presumptive females had much lower survival, and overall survivorship for the eight-month period was 0.185-0.208, depending on the modelling approach. Our study suggests that, within the range of concentrations we observed, incubation temperature has a stronger effect on offspring behavior and survival than maternally-transferred mercury pollution in American alligators.


Assuntos
Jacarés e Crocodilos , Mercúrio , Animais , Feminino , Masculino , Mercúrio/toxicidade , Mercúrio/análise , Ovos , South Carolina , Reprodução
8.
Environ Toxicol Chem ; 42(2): 525-534, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36636863

RESUMO

Mercury is a naturally occurring element but is also considered a widespread contaminant due to global anthropogenic activity. Even in moderate amounts, mercury (Hg) is an established neurotoxin and is associated with a range of adverse outcomes both in humans and wildlife. Humans in the United States are most commonly exposed to Hg through contaminated food or drinking water, and the consumption of game species, particularly those occupying higher trophic levels, has the potential to expose hunters to high concentrations of Hg. In the present study, we determined Hg concentrations in tail muscle and blood from American alligators (Alligator mississippiensis) inhabiting a region (Savannah River Site, SC, USA) with known Hg contamination. We then integrated these data with alligator harvest records and previously published surveys of alligator meat consumption patterns to estimate potential exposure risk. We found that the average Hg concentrations in tail muscle (1.34 mg/kg, wet wt) from sampled alligators exceeded the recommended threshold for Hg exposure based on the World Health Organization's guidelines (0.5 mg/kg, wet wt). In addition, based on regional consumption patterns reported for both adults and children, we estimated Hg exposures ( x ¯ Adult = 0.419 µg/kg/day, x ¯ Child = 2.24 µg/kg/day) occurring well above the US Environmental Protection Agency methylmercury reference dose of 0.1 µg/kg/day. Although the two reservoirs sampled in the present study are not currently open to alligator hunting, they are connected to waters that are publicly accessible, and the extent of alligator mobility across these sites is not known. Together, the findings reported in the present study further demonstrate the need for active monitoring of Hg concentrations in game species, which can convey substantial exposure risks to the public. Environ Toxicol Chem 2023;42:525-534. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Jacarés e Crocodilos , Mercúrio , Compostos de Metilmercúrio , Animais , Criança , Humanos , Monitoramento Ambiental , Mercúrio/análise , Animais Selvagens
9.
Sex Dev ; 17(2-3): 99-119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36380624

RESUMO

BACKGROUND: Reptiles and amphibians provide untapped potential for discovering how a diversity of genetic pathways and environmental conditions are incorporated into developmental processes that can lead to similar functional outcomes. These groups display a multitude of reproductive strategies, and whereas many attributes are conserved within groups and even across vertebrates, several aspects of sexual development show considerable variation. SUMMARY: In this review, we focus our attention on the development of the reptilian and amphibian ovary. First, we review and describe the events leading to ovarian development, including sex determination and ovarian maturation, through a comparative lens. We then describe how these events are influenced by environmental factors, focusing on temperature and exposure to anthropogenic chemicals. Lastly, we identify critical knowledge gaps and future research directions that will be crucial to moving forward in our understanding of ovarian development and the influences of the environment in reptiles and amphibians. KEY MESSAGES: Reptiles and amphibians provide excellent models for understanding the diversity of sex determination strategies and reproductive development. However, a greater understanding of the basic biology of these systems is necessary for deciphering the adaptive and potentially disruptive implications of embryo-by-environment interactions in a rapidly changing world.


Assuntos
Anfíbios , Répteis , Animais , Feminino , Répteis/genética , Anfíbios/genética , Diferenciação Sexual/genética , Ovário , Temperatura , Processos de Determinação Sexual/genética
10.
Mol Ecol Resour ; 23(1): 131-144, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35957540

RESUMO

Biological ageing is connected to life history variation across ecological scales and informs a basic understanding of age-related declines in organismal function. Altered DNA methylation dynamics are a conserved aspect of biological ageing and have recently been modelled to predict chronological age among vertebrate species. In addition to their utility in estimating individual age, differences between chronological and predicted ages arise due to acceleration or deceleration of epigenetic ageing, and these discrepancies are linked to disease risk and multiple life history traits. Although evidence suggests that patterns of DNA methylation can describe ageing in plants, predictions with epigenetic clocks have yet to be performed. Here, we resolve the DNA methylome across CpG, CHG, and CHH-methylation contexts in the loblolly pine tree (Pinus taeda) and construct epigenetic clocks capable of predicting ages in this species within 6% of its maximum lifespan. Although patterns of CHH-methylation showed little association with age, both CpG and CHG-methylation contexts were strongly associated with ageing, largely becoming hypomethylated with age. Among age-associated loci were those in close proximity to malate dehydrogenase, NADH dehydrogenase, and 18S and 26S ribosomal RNA genes. This study reports one of the first epigenetic clocks in plants and demonstrates the universality of age-associated DNA methylation dynamics which can inform conservation and management practices, as well as our ecological and evolutionary understanding of biological ageing in plants.


Assuntos
Metilação de DNA , Pinus taeda , Pinus taeda/genética , Epigenômica/métodos , Epigênese Genética
11.
Environ Toxicol Chem ; 41(12): 2999-3006, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36102844

RESUMO

The ability of an organism to cope with environmental stressors varies across the life span because of developmental stage-specific responses and age-related functional declines. In the present study, we examined the effect of age on acute copper toxicity in Japanese medaka (Oryzias latipes). We first determined the median lethal concentration (LC50) at 96 h for embryos, 7-day-old fry, and 6-month-old medaka. Embryos were exposed to 0, 15, 30, 60, 125, 250, and 500 ppb CuSO4 through hatching. Fry were exposed to 0, 20, 50, 75, 100, 150, 250, and 500 ppb CuSO4 for 96 h. Adult fish were exposed to 0, 100, 150, 200, 250, and 300 ppb CuSO4 for 96 h. The 96-h LC50 was 804 ppb for embryos, 262 ppb for embryonically exposed larvae, 60.3 ppb for 7-day-old fry, and 226 ppb for adults. We then challenged cohorts of fish aged 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, and 16 months with a 225-ppb CuSO4 exposure to determine the acute toxicity across the life span. The fish exhibited a bimodal tolerance to copper, with tolerance peaking in 2- and 3-month-old fish and again at 10 and 11 months of age. Our data demonstrate that copper sensitivity is dynamic throughout the medaka life span and may be influenced by trade-offs with reproduction. Environ Toxicol Chem 2022;41:2999-3006. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , Cobre/toxicidade , Longevidade , Poluentes Químicos da Água/toxicidade , Larva , Embrião não Mamífero
12.
Mol Ecol ; 31(21): 5487-5505, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35997618

RESUMO

Conservation of thermally sensitive species depends on monitoring organismal and population-level responses to environmental change in real time. Epigenetic processes are increasingly recognized as key integrators of environmental conditions into developmentally plastic responses, and attendant epigenomic data sets hold potential for revealing cryptic phenotypes relevant to conservation efforts. Here, we demonstrate the utility of genome-wide DNA methylation (DNAm) patterns in the face of climate change for a group of especially vulnerable species, those with temperature-dependent sex determination (TSD). Due to their reliance on thermal cues during development to determine sexual fate, contemporary shifts in temperature are predicted to skew offspring sex ratios and ultimately destabilize sensitive populations. Using reduced-representation bisulphite sequencing, we profiled the DNA methylome in blood cells of hatchling American alligators (Alligator mississippiensis), a TSD species lacking reliable markers of sexual dimorphism in early life stages. We identified 120 sex-associated differentially methylated cytosines (DMCs; FDR < 0.1) in hatchlings incubated under a range of temperatures, as well as 707 unique temperature-associated DMCs. We further developed DNAm-based models capable of predicting hatchling sex with 100% accuracy (in 20 training samples and four test samples) and past incubation temperature with a mean absolute error of 1.2°C (in four test samples) based on the methylation status of 20 and 24 loci, respectively. Though largely independent of epigenomic patterning occurring in the embryonic gonad during TSD, DNAm patterns in blood cells may serve as nonlethal markers of hatchling sex and past incubation conditions in conservation applications. These findings also raise intriguing questions regarding tissue-specific epigenomic patterning in the context of developmental plasticity.


Assuntos
Jacarés e Crocodilos , Metilação de DNA , Animais , Temperatura , Metilação de DNA/genética , Razão de Masculinidade , Mudança Climática , Processos de Determinação Sexual/genética
13.
Mol Cell Endocrinol ; 557: 111751, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35963581

RESUMO

Interactions between the endocrine system and environmental contaminants are responsible for impairing reproductive development and function. Despite the taxonomic diversity of affected species and attendant complexity inherent to natural systems, the underlying signaling pathways and cellular consequences are mostly studied in lab models. To resolve the genetic and endocrine pathways that mediate affected ovarian function in organisms exposed to endocrine disrupting contaminants in their natural environments, we assessed broad-scale transcriptional and steroidogenic responses to exogenous gonadotropin stimulation in juvenile alligators (Alligator missippiensis) originating from a lake with well-documented pollution (Lake Apopka, FL) and a nearby reference site (Lake Woodruff, FL). We found that individuals from Lake Apopka are characterized by hyperandrogenism and display hyper-sensitive transcriptional responses to gonadotropin stimulation when compared to individuals from Lake Woodruff. Site-specific transcriptomic divergence appears to be driven by wholly distinct subsets of transcriptional regulators, indicating alterations to fundamental genetic pathways governing ovarian function. Consistent with broad-scale transcriptional differences, ovaries of Lake Apopka alligators displayed impediments to folliculogenesis, with larger germinal beds and decreased numbers of late-stage follicles. After resolving the ovarian transcriptome into clusters of co-expressed genes, most site-associated modules were correlated to ovarian follicule phenotypes across individuals. However, expression of two site-specific clusters were independent of ovarian cellular architecture and are hypothesized to represent alterations to cell-autonomous transcriptional programs. Collectively, our findings provide high resolution mapping of transcriptional patterns to specific reproductive function and advance our mechanistic understanding regarding impaired reproductive health in an established model of environmental endocrine disruption.


Assuntos
Jacarés e Crocodilos , Insuficiência Ovariana Primária , Jacarés e Crocodilos/genética , Animais , Feminino , Redes Reguladoras de Genes , Gonadotropinas , Humanos , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/genética
14.
Biology (Basel) ; 11(2)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35205135

RESUMO

Little is known about the disease ecology of American alligators (Alligator mississippiensis), and especially how they respond immunologically to emerging infectious diseases and zoonotic pathogens. In this study, we examined serum samples collected from wild alligators in Florida (2010-2011) and South Carolina (2011-2012, 2014-2017) for antibody responses to multiple bacteria. Immunoglobulin Y (IgY) was purified from serum to generate a mouse monoclonal antibody (mAb AMY-9) specific to the IgY heavy chain. An indirect ELISA was then developed for quantifying antibody responses against whole cell Escherichia coli,Vibrio parahaemolyticus, Vibrio vulnificus, Mycobacterium fortuitum, Erysipelothrix rhusiopthiae, and Streptococcus agalactiae. In Florida samples the primary differences in antibody levels were between January-March and late spring through summer and early fall (May-October), most likely reflecting seasonal influences in immune responses. Of note, differences over the months in antibody responses were confined to M. fortuitum, E. rhusiopthiae, V. vulnificus, and E. coli. Robust antibody responses in SC samples were observed in 2011, 2014, and 2015 against each bacterium except E. coli. All antibody responses were low in 2016 and 2017. Some of the highest antibody responses were against V. parahaemolyticus, M. fortuitum, and E. rhusiopthiae. One SC alligator estimated to be 70+ years old exhibited the highest measured antibody response against V. parahaemolyticus and M. fortuitum. By combining data from both sites, we show a clear correlation between body-mass-indices (BMI) and antibody titers in all six of the bacteria examined. Our study provides a critical antibody reagent and a proof-of-concept approach for studying the disease ecology of alligators in both the wild and in captivity.

15.
Mol Ecol ; 31(23): 6114-6127, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34101921

RESUMO

The mechanisms connecting environmental conditions to plasticity in biological aging trajectories are fundamental to understanding individual variation in functional traits and life history. Recent findings suggest that telomere biology is especially dynamic during early life stages and has long-term consequences for subsequent reproduction and survival. However, our current understanding is mostly derived from studies investigating ecological and anthropogenic factors separately, leaving the effects of complex environmental interactions unresolved. American alligators (Alligator mississippiensis) are long-lived apex predators that rely on incubation temperature during a discrete period during development and endocrine cues to determine sex, making them especially vulnerable to current climatic variability and exposure to anthropogenic contaminants interfering with hormone function. Here, we combine field studies with a factorial design to understand how the developmental environment, along with intrinsic biological variation contribute to persistent telomere variation. We found that exposure to a common endocrine disrupting contaminant, DDE, affects telomere length, but that the directionality is highly dependent upon incubation temperature. Variation in hatchling growth, underlies a strong clutch effect. We also assess concentrations of a panel of glucocorticoid hormones and find that contaminant exposure elicits an increase in circulating glucocorticoids. Consistent with emerging evidence linking stress and aging trajectories, GC levels also appear to trend with shorter telomere length. Thus, we add support for a mechanistic link between contaminants and glucocorticoid signalling, which interacts with ecological aspects of the developmental environment to alter telomere dynamics.


Assuntos
Jacarés e Crocodilos , Glucocorticoides , Animais , Envelhecimento , Telômero/genética
16.
Environ Toxicol Chem ; 41(3): 748-757, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34918380

RESUMO

Combined environmental stressors that an organism experiences can have both immediate and lasting consequences. In the present study, we exposed Japanese medaka (Oryzias latipes) embryos to sublethal copper sulfate (CuSO4 ; 0, 10, and 100 ppb) in combination with different rearing temperatures (27, 30, and 33 °C) to assess acute and latent effects on development, growth, and regenerative capacity. Embryos exposed to CuSO4 and/or higher temperatures hatched significantly earlier. At 4 months post-exposure, fish exposed to low levels of CuSO4 during development had higher survival, whereas fish exposed to both 100 ppb CuSO4 and 33 °C temperatures had significantly lower survival. In addition, a sex-specific effect of embryonic CuSO4 exposure was observed as female mass decreased with increasing Cu dose. We also assessed caudal fin regenerative capabilities in both embryo-exposed fish at 4 months of age and adult medaka that were exposed to 0, 10, and 100 ppb CuSO4 at room temperature during a 14-day trial. Whereas fin regeneration was unaffected by adult exposure to Cu, fish transiently exposed during embryogenesis displayed an initial increase in fin growth rate and an increased incidence of abnormal fin morphology following regrowth. Collectively, these data suggest that developmental Cu exposure has the potential to exert long-lasting impacts to organismal growth, survival, and function. Environ Toxicol Chem 2022;41:748-757. © 2021 SETAC.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Embrião não Mamífero , Desenvolvimento Embrionário , Feminino , Masculino , Taxa de Sobrevida , Temperatura , Poluentes Químicos da Água/toxicidade
17.
Aging (Albany NY) ; 13(19): 22752-22771, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34644261

RESUMO

Alterations to the epigenome are a hallmark of biological aging and age-dependent patterning of the DNA methylome ("epigenetic aging") can be modeled to produce epigenetic age predictors. Rates of epigenetic aging vary amongst individuals and correlate to the onset of age-related disease and all-cause mortality. Yet, the origins of epigenetic-to-chronological age discordance are not empirically resolved. Here, we investigate the relationship between aging, DNA methylation, and environmental exposures in Japanese medaka (Oryzias latipes). We find age-associated DNA methylation patterning enriched in genomic regions of low CpG density and that, similar to mammals, most age-related changes occur during early life. We construct an epigenetic clock capable of predicting chronological age with a mean error of 61.1 days (~8.4% of average lifespan). To test the role of environmental factors in driving epigenetic age variation, we exposed medaka to chronic, environmentally relevant doses of ionizing radiation. Because most organisms share an evolutionary history with ionizing radiation, we hypothesized that exposure would reveal fundamental insights into environment-by-epigenetic aging interactions. Radiation exposure disrupted epigenetic aging by accelerating and decelerating normal age-associated patterning and was most pronounced in cytosines that were moderately associated with age. These findings empirically demonstrate the role of DNA methylation in integrating environmental factors into aging trajectories.


Assuntos
Envelhecimento/efeitos da radiação , Epigênese Genética/efeitos da radiação , Radiação Ionizante , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Relação Dose-Resposta à Radiação , Epigenoma , Oryzias
18.
Biol Bull ; 241(1): 43-54, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34436964

RESUMO

AbstractThe environment experienced during embryonic development is a rich source of phenotypic variation, as environmental signals have the potential to both inform adaptive plastic responses and disrupt normal developmental programs. Environment-by-embryo interactions are particularly consequential for species with temperature-dependent sex determination, a mode of sex determination common in non-avian reptiles and fish, in which thermal cues during a discrete period of development drive the formation of either an ovary or a testis. Here we examine the impact of thermal variation during incubation in combination with developmental exposure to a common endocrine-disrupting contaminant on fitness-related hatchling traits in the American alligator (Alligator mississippiensis), a species with temperature-dependent sex determination. Using a factorial design, we exposed field-collected eggs to five thermal profiles (three constant temperatures, two fluctuating temperatures) and two environmentally relevant doses of the pesticide metabolite dichlorodiphenyldichloroethylene; and we quantified incubation duration, sex ratios, hatchling morphometric traits, and growth (9-10 days post-hatch). Whereas dichlorodiphenyldichloroethylene exposure did not generally affect hatchling traits, constant and fluctuating temperatures produced diverse phenotypic effects. Thermal fluctuations led to subtle changes in incubation duration and produced shorter hatchlings with smaller heads when compared to the constant temperature control. Warmer, male-promoting incubation temperatures resulted in larger hatchlings with more residual yolk reserves when compared to cooler, female-promoting temperatures. Together, these findings advance our understanding of how complex environmental factors interact with developing organisms to generate phenotypic variation and raise questions regarding the mechanisms connecting variable thermal conditions to responses in hatchling traits and their evolutionary implications for temperature-dependent sex determination.


Assuntos
Desenvolvimento Embrionário , Razão de Masculinidade , Animais , Feminino , Masculino , Fenótipo , Temperatura
19.
Environ Health Perspect ; 128(11): 117003, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33186072

RESUMO

BACKGROUND: Concern has grown in recent decades over anthropogenic contaminants that interfere with the functioning of endocrine hormones. However, mechanisms connecting developmental processes to pathologies associated with endocrine-disrupting chemical (EDC) exposure are poorly understood in naturally exposed populations. OBJECTIVES: We sought to a) characterize divergence in ovarian transcriptomic and follicular profiles between alligators originating from a historically EDC-contaminated site, Lake Apopka, and a reference site; b) test the ability of developmentally precocious estrogen exposure to recapitulate site-associated patterns of divergence; and c) test whether treatment with exogenous follicle-stimulating hormone (FSH) is capable of rescuing phenotypes associated with contaminant exposure and/or embryonic estrogen treatment. METHODS: Alligators eggs were collected from a contaminated site and a reference site, and a subset of eggs from the reference site were treated with estradiol (E2) during embryonic development prior to gonadal differentiation. After hatching, alligators were raised under controlled laboratory settings for 5 months. Juveniles from both sites were divided and treated with exogenous FSH. Histological analyses and RNA-sequencing were conducted to characterize divergence in ovarian follicle dynamics and transcriptomes between sites, between reference and E2-treated animals, and between FSH-treated and nontreated animals. RESULTS: We observed broad site-of-origin divergence in ovarian transcriptomes and reductions in ovarian follicle density between juvenile alligators from Lake Apopka and the reference site. Treating embryos from the reference site with E2 overwhelmingly recapitulated transcriptional and histological alterations observed in Lake Apopka juveniles. Ovarian phenotypes observed in Lake Apopka alligators or resulting from estrogen treatment were only partially rescued by treatment with exogenous FSH. DISCUSSION: Recapitulation of ovarian abnormalities by precocious E2 revealed a relatively simple mechanism underlying contaminant-induced pathologies in a historical example of environmental endocrine disruption. Findings reported here support a model where the developmental timing of estrogen signaling has the potential to permanently alter ovarian organization and function. https://doi.org/10.1289/EHP6627.


Assuntos
Jacarés e Crocodilos/fisiologia , Disruptores Endócrinos/toxicidade , Folículo Ovariano/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Animais Recém-Nascidos , Embrião não Mamífero , Desenvolvimento Embrionário , Estradiol , Estrogênios , Feminino , Hormônio Foliculoestimulante , Lagos , Ovário , Testosterona , Transcriptoma
20.
Trends Genet ; 36(10): 725-727, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32624337

RESUMO

The genetic mechanisms contributing to lifespan variation remain unresolved. Based on recent conceptual advances in our understanding of epigenetic potential and the relocalization of chromatin modifiers (RCM), we hypothesize that increased CpG density is protective against age-related erosion of the epigenetic landscape and may explain interspecific variation in lifespan.


Assuntos
Envelhecimento/genética , Ilhas de CpG , Metilação de DNA , Longevidade/genética , Animais , Epigênese Genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...