Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 78(8): 3596-3607, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35604048

RESUMO

BACKGROUND: Estimating parasitoid abundance in the field can be difficult, even more so when attempting to quantify parasitism rates and the ecosystem service of biological control that parasitoids can provide. To understand how 'field observed' parasitism rates (in-field mummy counts) of the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) translate to 'laboratory observed' parasitism rates (laboratory-reared parasitoid counts), field work was undertaken in Australian canola fields, over the winter growing season. RESULTS: Overall, laboratory observed parasitism was on average 2.4 times higher than field observed parasitism, with rates an average of four-fold higher in fields from South Australia. Total field observed and laboratory observed parasitism rates (OPRs) of M. persicae varied considerably across regions, but less so among fields within regions. As crop growth stage progressed, the incidence of field observed mummies increased. The incidence of total parasitoids reared also increased with crop growth stage, averaging 3.4% during flowering and reaching 14.4% during podding/senescing. Although there was a greater diversity of reared parasitoid species at later crop growth stages, the laboratory OPR was unaffected by parasitoid species. Diaeretiella rapae was the most commonly reared parasitoid, increasing in absolute abundance with crop growth stage. CONCLUSION: These findings indicate that field mummy counts alone do not provide a clear representation of parasitism within canola fields. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Afídeos , Brassica napus , Himenópteros , Vespas , Animais , Austrália , Ecossistema , Controle Biológico de Vetores
2.
Pest Manag Sci ; 78(2): 653-661, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34647406

RESUMO

BACKGROUND: The green peach aphid Myzus persicae is a major pest of many crops around the world, causing direct damage and acting as a vector for several viruses. This species has developed resistance to several insecticides, resulting in a greater emphasis on nonchemical methods of control. The aphidophagous ladybird, Harmonia conformis, is one of several species to predate on this pest. H. conformis is native to Australia, but has been exported to New Zealand, the USA and Europe as a biological control agent for horticultural pests and has now become established in several regions. Despite these introductions, the ability of H. conformis to predate on M. persicae has not yet been quantified. To address this knowledge gap, we measured the potential success of this natural enemy and its functional response over a range of temperatures. RESULTS: H. conformis displayed a Type II response over all temperatures assessed. The peak temperature for voracity was 32 °C, with a potential maximum daily predation rate of 204 aphids. Consumption of aphids by H. conformis on canola plants within a glasshouse was less than predicted from the laboratory-generated models. However, consumption increased significantly with increasing density of M. persicae. CONCLUSION: H. conformis can contribute markedly to aphid suppression and could be incorporated into integrated pest management systems which rely on natural enemies, particularly during spring when temperatures increase above 25 °C. Furthermore, it would also be an ideal candidate for augmentative releases. © 2021 Society of Chemical Industry.


Assuntos
Afídeos , Besouros , Animais , Controle Biológico de Vetores , Densidade Demográfica , Comportamento Predatório , Temperatura
3.
Ecol Appl ; 32(2): e2456, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34520082

RESUMO

Conservation biological control (CBC) has been an active research topic for the last two decades and is now one of the key ways being explored to develop agroecological production systems. Using broad concepts and indicators, recent reviews and meta-analyses have highlighted major inconsistencies in the responses of CBC to landscape structure, revealing their context-dependent nature. To decipher these relations, we reviewed the scientific literature (50 articles) using (1) an original ontology allowing us to navigate across the different terms and concepts used in this literature and (2) a network-based methodology to describe the scattering, completeness, and generalizability of scientific knowledge on CBC. An interactive version of this network is available online. Our results highlight the strong information scattering caused by the variety of indicators used to describe both landscape structure and CBC. We observe trade-offs between the use of coarse concepts classically used in meta-analysis (e.g., landscape complexity) and the non-convergence of results (ambiguity). The network analysis points out consistently less information ambiguity when considering sub-networks focused on trophic chains than in the full information network, without losing connectance. We suggest that effects of landscape structure may be different between trophic chains because of specific selection pressures associated with cropping systems. Our novel review procedure offers a relatively simple but powerful complementary approach to classical meta-analysis to explore ecological patterns. It highlights that crop trophic chain probably represents the adequate ecological unit to investigate the landscape-CBC relationship. Designing pest suppressive landscapes while favoring farmland biodiversity will imply considering multiple crop trophic chains responding differently to landscape structure. Therefore, we recommend assessing the level of CBC at both crop field and landscape scales to inform decisions on the best individual or collective strategy to adopt.


Assuntos
Ecossistema , Controle Biológico de Vetores , Biodiversidade , Controle Biológico de Vetores/métodos
4.
Biol Invasions ; 23(12): 3891-3906, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456614

RESUMO

Aedes aegypti (Linnaeus) was once highly prevalent across eastern Australia, resulting in epidemics of dengue fever. Drought conditions have led to a rapid rise in semi-permanent, urban water storage containers called rainwater tanks known to be critical larval habitat for the species. The presence of these larval habitats has increased the risk of establishment of highly urbanised, invasive mosquito vectors such as Ae. aegypti. Here we use a spatially explicit network model to examine the role that unsealed rainwater tanks may play in population connectivity of an Ae. aegypti invasion in suburbs of Brisbane, a major Australian city. We characterise movement between rainwater tanks as a diffusion-like process, limited by a maximum distance of movement, average life expectancy, and a probability that Ae. aegypti will cross wide open spaces such as roads. The simulation model was run against a number of scenarios that examined population spread through the rainwater tank network based on non-compliance rates of tanks (unsealed or sealed) and road grids. We show that Ae. aegypti tank infestation and population spread was greatest in areas of high tank density and road lengths were shortest e.g. cul-de-sacs. Rainwater tank non-compliance rates of over 30% show increased connectivity when compared to less than 10%, suggesting rainwater tanks non-compliance should be maintained under this level to minimize the spread of an invading Ae. aegypti population. These results presented as risk maps of Ae. aegypti spread across Brisbane, can assist health and government authorities on where to optimally target rainwater tank surveillance and educational activities. Supplementary Information: The online version contains supplementary material available at 10.1007/s10530-021-02619-z.

5.
Environ Sci Technol ; 55(2): 1290-1300, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33404222

RESUMO

While the need to reduce the impacts of pesticide use on the environment is increasingly acknowledged, the existing data on the use of agricultural chemicals are hardly adequate to support this goal. This study presents a novel, spatially explicit, national-scale baseline analysis of pesticide toxicity hazard (the potential for chemicals to do harm). The results show an uneven contribution of land uses and growing regions toward the national aggregate toxicity hazard. A hectare of horticultural crops generates on average ten times more aquatic ecotoxicity hazard and five times more human toxicity hazard than a hectare of broadacre crops, but the higher yields and incomes in horticulture mean that both sectors are similar in terms of environmental efficiency. Livestock is the sector with the least contribution to overall hazard, even when the indirect hazard associated with feed is considered. Metrics such as pesticide use (kg/ha) or spray frequency (sprays/ha), commonly reported in highly aggregated forms, are not linearly related to toxicity hazard and are therefore less informative in driving reductions in impact. We propose toxicity hazard as a more suitable indicator for real-world risk than quantity of pesticide used, especially because actual risk can often be difficult to quantify. Our results will help broaden the discussion around pathways toward sustainability in the land-use sector and identify targeted priorities for action.


Assuntos
Agricultura , Praguicidas , Agroquímicos , Austrália , Produtos Agrícolas , Humanos , Praguicidas/análise , Praguicidas/toxicidade
6.
Sci Rep ; 10(1): 22049, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328547

RESUMO

Projected climate changes are thought to promote emerging infectious diseases, though to date, evidence linking climate changes and such diseases in plants has not been available. Cassava is perhaps the most important crop in Africa for smallholder farmers. Since the late 1990's there have been reports from East and Central Africa of pandemics of begomoviruses in cassava linked to high abundances of whitefly species within the Bemisia tabaci complex. We used CLIMEX, a process-oriented climatic niche model, to explore if this pandemic was linked to recent historical climatic changes. The climatic niche model was corroborated with independent observed field abundance of B. tabaci in Uganda over a 13-year time-series, and with the probability of occurrence of B. tabaci over 2 years across the African study area. Throughout a 39-year climate time-series spanning the period during which the pandemics emerged, the modelled climatic conditions for B. tabaci improved significantly in the areas where the pandemics had been reported and were constant or decreased elsewhere. This is the first reported case where observed historical climate changes have been attributed to the increase in abundance of an insect pest, contributing to a crop disease pandemic.


Assuntos
Aclimatação , Begomovirus , Mudança Climática , Hemípteros/fisiologia , Manihot , Doenças das Plantas , Animais , Manihot/parasitologia , Manihot/virologia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Uganda
7.
Pest Manag Sci ; 76(8): 2699-2710, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32162459

RESUMO

BACKGROUND: The whitefly Bemisia tabaci is an important vector of virus diseases, impacting cassava production in East Africa. To date, breeding efforts in this region have focused on disease resistance. Here we use a spatially-explicit simulation model to explore how breeding strategies for whitefly resistance will influence the population dynamics of whitefly in the context of regional variation in cassava crop management practices. RESULTS: Simulations indicated that regions with a short cropping cycle and two cropping seasons per year were associated with high whitefly abundance. Nymph mortality and antixenosis resistance mechanisms were more effective than mechanisms that lead to longer whitefly development times. When spatial variation was introduced in heterogeneous landscapes, however, negative consequences of the antixenosis effect were observed in fields containing whitefly susceptible varieties, unless the proportion of whitefly resistant variety in the landscape was low (~10%) or the amount of matrix in the landscape was high (~75%). CONCLUSION: We show the importance of considering cropping regime and landscape management context when developing and deploying whitefly-resistant cassava varieties. Recommendations differ significantly between regions. There may also be unintended negative consequences of higher whitefly densities for whitefly susceptible varieties if uptake of the new variety in a landscape is high, depending on the mechanism of resistance and the landscape context. Furthermore, we show that in some cases, such as where there is substantial fallow combined with a short single-season crop, the management characteristics of the existing cropping regime alone may be effective at controlling whitefly populations. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Hemípteros , Manihot , África Oriental , Animais , Cruzamento , Doenças das Plantas
8.
Annu Rev Entomol ; 64: 277-295, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30296859

RESUMO

The recent introduction and spread of Helicoverpa armigera throughout South America highlight the invasiveness and adaptability of moths in the Helicoverpa genus. Long-range movement in three key members, H. armigera, H. zea, and H. punctigera, occurs by migration and international trade. These movements facilitate high population admixture and genetic diversity, with important economic, biosecurity, and control implications in today's agricultural landscape. This is particularly true for the spread of resistance alleles to transgenic crops expressing Bacillus thuringiensis (Bt) toxins that are planted over vast areas to suppress Helicoverpa spp. The ability to track long-distance movement through radar technology, population genetic markers, and/or long-distance dispersal modeling has advanced in recent years, yet we still know relatively little about the population trajectories or migratory routes in Helicoverpa spp. Here, we consider how experimental and theoretical approaches can be integrated to fill key knowledge gaps and assist management practices.


Assuntos
Migração Animal , Espécies Introduzidas , Mariposas , Animais , Controle de Insetos , Filogeografia
9.
PLoS One ; 13(10): e0204862, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30300388

RESUMO

Cassava is a staple food for people across sub-Saharan Africa. Over the last 20 years, there has been an increased frequency of outbreaks and crop damage in this region caused by the cassava-adapted Bemisia tabaci putative species. Little is known about when and why B. tabaci adults move and colonize new cassava crops, especially in farming systems that contain a mixture of cultivar types and plant ages. Here, we assessed experimentally whether the age and variety of cassava affected the density of B. tabaci. We also tested whether the age and variety of the source cassava field affected the variety preference of B. tabaci when they colonized new cassava plants. We placed uninfested potted "sentinel" plants of three cassava varieties (Nam 130, Nase 14, and Njule Red) in source fields containing one of two varieties (Nam 130 or Nase 14) and one of three age classes (young, medium, or old). After two weeks, the numbers of nymphs on the sentinel plants were used as a measure of colonization. Molecular identification revealed that the B. tabaci species was sub-Saharan Africa 1 (SSA1). We found a positive correlation between the density of nymphs on sentinel plants and the density of adults in the source field. The density of nymphs on the sentinels was not significantly related to the age of the source field. Bemisia tabaci adults did not preferentially colonize the sentinel plant of the same variety as the source field. There was a significant interactive effect, however, between the source and sentinel variety that may indicate variability in colonization. We conclude that managing cassava source fields to reduce B. tabaci abundance will be more effective than manipulating nearby varieties. We also suggest that planting a "whitefly sink" variety is unlikely to reduce B. tabaci SSA1 populations unless fields are managed to reduce B. tabaci densities using other integrative approaches.


Assuntos
Hemípteros/classificação , Manihot/crescimento & desenvolvimento , Análise de Sequência de DNA/métodos , Animais , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/parasitologia , Hemípteros/genética , Hemípteros/crescimento & desenvolvimento , Controle de Insetos , Manihot/parasitologia , Filogenia , Doenças das Plantas
10.
Sci Rep ; 8(1): 9555, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29934514

RESUMO

In the Australian subtropics, flying-foxes (family Pteropididae) play a fundamental ecological role as forest pollinators. Flying-foxes are also reservoirs of the fatal zoonosis, Hendra virus. Understanding flying fox foraging ecology, particularly in agricultural areas during winter, is critical to determine their role in transmitting Hendra virus to horses and humans. We developed a spatiotemporal model of flying-fox foraging intensity based on foraging patterns of 37 grey-headed flying-foxes (Pteropus poliocephalus) using GPS tracking devices and boosted regression trees. We validated the model with independent population counts and summarized temporal patterns in terms of spatial resource concentration. We found that spatial resource concentration was highest in late-summer and lowest in winter, with lowest values in winter 2011, the same year an unprecedented cluster of spillover events occurred in Queensland and New South Wales. Spatial resource concentration was positively correlated with El Niño Southern Oscillation at 3-8 month time lags. Based on shared foraging traits with the primary reservoir of Hendra virus (Pteropus alecto), we used our results to develop hypotheses on how regional climatic history, eucalypt phenology, and foraging behaviour may contribute to the predominance of winter spillovers, and how these phenomena connote foraging habitat conservation as a public health intervention.


Assuntos
Comportamento Animal , Quirópteros/virologia , Meio Ambiente , Vírus Hendra/fisiologia , Modelos Estatísticos , Análise Espaço-Temporal , Animais
11.
Insect Sci ; 25(4): 528-541, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27650673

RESUMO

We review the postulated threatening processes that may have affected the decline in the eastern population of the monarch butterfly, Danaus plexippus L. (Lepidoptera: Nymphalidae), in North America. Although there are likely multiple contributing factors, such as climate and resource-related effects on breeding, migrating, and overwintering populations, the key landscape-level change appears to be associated with the widespread use of genetically modified herbicide resistant crops that have rapidly come to dominate the extensive core summer breeding range. We dismiss misinterpretations of the apparent lack of population change in summer adult count data as logically flawed. Glyphosate-tolerant soybean and maize have enabled the extensive use of this herbicide, generating widespread losses of milkweed (Asclepias spp.), the only host plants for monarch larvae. Modeling studies that simulate lifetime realized fecundity at a landscape scale, direct counts of milkweeds, and extensive citizen science data across the breeding range suggest that a herbicide-induced, landscape-level reduction in milkweed has precipitated the decline in monarchs. A recovery will likely require a monumental effort for the re-establishment of milkweed resources at a commensurate landscape scale.


Assuntos
Borboletas , Produção Agrícola/métodos , Animais , Asclepias/efeitos dos fármacos , Dieta , Glicina/efeitos adversos , Glicina/análogos & derivados , Herbicidas/efeitos adversos , Larva , Dinâmica Populacional , Glifosato
12.
Pest Manag Sci ; 73(3): 485-492, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27753247

RESUMO

Helicoverpa armigera is a major pest of agriculture, horticulture and floriculture throughout the Old World and recently invaded parts of the New World. We overview of the evolution in thinking about the application of area-wide approaches to assist with its control by the Australian Cotton Industry to highlight important lessons and future challenges to achieving the same in the New World. An over-reliance of broad-spectrum insecticides led to Helicoverpa spp. in Australian cotton rapidly became resistant to DDT, synthetic pyrethroids, organophosphates, carbamates and endosulfan. Voluntary strategies were developed to slow the development of insecticide resistance, which included rotating chemistries and basing spray decisions on thresholds. Despite adoption of these practices, insecticide resistance continued to develop until the introduction of genetically modified cotton provided a platform for augmenting Integrated Pest Management in the Australian cotton industry. Compliance with mandatory resistance management plans for Bt cotton necessitated a shift from pest control at the level of individual fields or farms towards a coordinated area-wide landscape approach. Our take-home message for control of H. armigera is that resistance management is essential in genetically modified crops and must be season long and area-wide to be effective. © 2016 Society of Chemical Industry.


Assuntos
Gossypium/genética , Controle de Insetos , Mariposas , Plantas Geneticamente Modificadas/genética , Animais , Austrália , Geografia , Resistência a Inseticidas , Controle Biológico de Vetores
13.
J R Soc Interface ; 12(104): 20141158, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25631566

RESUMO

We present a simple model to study Lévy-flight foraging with a power-law step-size distribution [P(l) ∞ l-µ] in a finite landscape with countable targets. We find that different optimal foraging strategies characterized by a wide range of power-law exponent µopt, from ballistic motion (µopt → 1) to Lévy flight (1 < µopt < 3) to Brownian motion (µopt ≥ 3), may arise in adaptation to the interplay between the termination of foraging, which is regulated by the number of foraging steps, and the environmental context of the landscape, namely the landscape size and number of targets. We further demonstrate that stochastic returning can be another significant factor that affects the foraging efficiency and optimality of foraging strategy. Our study provides a new perspective on Lévy-flight foraging, opens new avenues for investigating the interaction between foraging dynamics and the environment and offers a realistic framework for analysing animal movement patterns from empirical data.


Assuntos
Comportamento Apetitivo , Comportamento Animal , Voo Animal , Animais , Modelos Biológicos , Modelos Estatísticos , Movimento , Processos Estocásticos
14.
Insect Sci ; 22(1): 35-51, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25099692

RESUMO

Areawide management has a long history of achieving solutions that target pests, however, there has been little focus on the areawide management of arthropod natural enemies. Landscape ecology studies that show a positive relationship between natural enemy abundance and habitat diversity demonstrate landscape-dependent pest suppression, but have not yet clearly linked their findings to pest management or to the suite of pests associated with crops that require control. Instead the focus has often been on model systems of single pest species and their natural enemies. We suggest that management actions to capture pest control from natural enemies may be forth coming if: (i) the suite of response and predictor variables focus on pest complexes and specific management actions; (ii) the contribution of "the landscape" is identified by assessing the timing and numbers of natural enemies immigrating and emigrating to and from the target crop, as well as pests; and (iii) pest control thresholds aligned with crop development stages are the benchmark to measure impact of natural enemies on pests, in turn allowing for comparison between study regions, and generalizations. To achieve pest control we will need to incorporate what has been learned from an ecological understanding of model pest and natural enemy systems and integrate areawide landscape management with in-field pest management.


Assuntos
Ecossistema , Cadeia Alimentar , Controle Biológico de Vetores/métodos , Animais , Artrópodes , Produtos Agrícolas/parasitologia , Modelos Biológicos , Comportamento Predatório
15.
Mov Ecol ; 1(1): 14, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25709827

RESUMO

Cereal aphids continue to be an important agricultural pest, with complex lifecycle and dispersal behaviours. Spatially-explicit models that are able to simulate flight initiation, movement direction, distance and timing of arrival of key aphid species can be highly valuable to area-wide pest management programmes. Here I present an overview of how knowledge about cereal aphid flight and migration can be utilized by mechanistic simulation models. This article identifies specific gaps in knowledge for researchers who may wish to further scientific understanding of aphid flight behaviour, whilst at the same time provides a synopsis of the knowledge requirements for a mechanistic approach applicable to the simulation of a wide range of insect species. Although they are one of the most comprehensively studied insect groups in entomology, it is only recently that our understanding of cereal aphid flight and migration has been translated effectively into spatially-explicit simulation models. There are now a multitude of examples available in the literature for modelling methods that address each of the four phases of the aerial transportation process (uplift, transport in the atmosphere, initial distribution, and subsequent movement). I believe it should now be possible to draw together this knowledgebase and the range of modelling methods available to simulate the entire process: integrating mechanistic simulations that estimate the initiation of migration events, with the large scale migration modelling of cereal aphids and their subsequent local movement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...